Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the length of the third side of the triangle, follow these steps:
1. Identify the Perimeter and the Given Sides:
The perimeter of the triangle is given as [tex]\( 7x + 8 \)[/tex].
The first side of the triangle has a length of [tex]\( 3x \)[/tex].
The second side of the triangle has a length of [tex]\( 2x - 5 \)[/tex].
2. Set Up the Perimeter Equation:
We know that the perimeter of a triangle is the sum of the lengths of its three sides. Let's call the third side [tex]\( \text{side3} \)[/tex]. Therefore, we have:
[tex]\[ \text{side1} + \text{side2} + \text{side3} = \text{perimeter} \][/tex]
Plugging in the known values, we get:
[tex]\[ 3x + (2x - 5) + \text{side3} = 7x + 8 \][/tex]
3. Combine and Simplify the Known Terms:
Let's simplify the left-hand side by combining like terms:
[tex]\[ 3x + 2x - 5 + \text{side3} = 7x + 8 \][/tex]
This simplifies to:
[tex]\[ 5x - 5 + \text{side3} = 7x + 8 \][/tex]
4. Isolate the Third Side:
To find [tex]\( \text{side3} \)[/tex], isolate it on one side of the equation. Subtract [tex]\( 5x - 5 \)[/tex] from both sides:
[tex]\[ \text{side3} = 7x + 8 - (5x - 5) \][/tex]
Simplify the right-hand side:
[tex]\[ \text{side3} = 7x + 8 - 5x + 5 = 2x + 13 \][/tex]
Therefore, the length of the third side of the triangle is [tex]\( 2x + 13 \)[/tex].
5. Verify the Answer with the Given Options:
From the given options:
[tex]\[ x + 13, \quad 2x + 13, \quad 5x - 5, \quad 12x + 3 \][/tex]
we find that [tex]\( 2x + 13 \)[/tex] matches our calculated length for the third side.
Thus, the correct answer is [tex]\( 2x + 13 \)[/tex].
So, the length of the third side is [tex]\( 2x + 13 \)[/tex] and this matches option 2.
1. Identify the Perimeter and the Given Sides:
The perimeter of the triangle is given as [tex]\( 7x + 8 \)[/tex].
The first side of the triangle has a length of [tex]\( 3x \)[/tex].
The second side of the triangle has a length of [tex]\( 2x - 5 \)[/tex].
2. Set Up the Perimeter Equation:
We know that the perimeter of a triangle is the sum of the lengths of its three sides. Let's call the third side [tex]\( \text{side3} \)[/tex]. Therefore, we have:
[tex]\[ \text{side1} + \text{side2} + \text{side3} = \text{perimeter} \][/tex]
Plugging in the known values, we get:
[tex]\[ 3x + (2x - 5) + \text{side3} = 7x + 8 \][/tex]
3. Combine and Simplify the Known Terms:
Let's simplify the left-hand side by combining like terms:
[tex]\[ 3x + 2x - 5 + \text{side3} = 7x + 8 \][/tex]
This simplifies to:
[tex]\[ 5x - 5 + \text{side3} = 7x + 8 \][/tex]
4. Isolate the Third Side:
To find [tex]\( \text{side3} \)[/tex], isolate it on one side of the equation. Subtract [tex]\( 5x - 5 \)[/tex] from both sides:
[tex]\[ \text{side3} = 7x + 8 - (5x - 5) \][/tex]
Simplify the right-hand side:
[tex]\[ \text{side3} = 7x + 8 - 5x + 5 = 2x + 13 \][/tex]
Therefore, the length of the third side of the triangle is [tex]\( 2x + 13 \)[/tex].
5. Verify the Answer with the Given Options:
From the given options:
[tex]\[ x + 13, \quad 2x + 13, \quad 5x - 5, \quad 12x + 3 \][/tex]
we find that [tex]\( 2x + 13 \)[/tex] matches our calculated length for the third side.
Thus, the correct answer is [tex]\( 2x + 13 \)[/tex].
So, the length of the third side is [tex]\( 2x + 13 \)[/tex] and this matches option 2.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.