Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the limit [tex]\(\lim _{x \rightarrow 0} \frac{e^x-1}{x}\)[/tex], follow these steps:
1. Understand the problem: We need to find the limit as [tex]\( x \)[/tex] approaches 0 of the function [tex]\( \frac{e^x - 1}{x} \)[/tex].
2. Apply L'Hôpital's Rule: The indeterminate form [tex]\(\frac{0}{0}\)[/tex] suggests that we can use L'Hôpital's Rule. L'Hôpital's Rule states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], the limit of [tex]\(\frac{f(x)}{g(x)}\)[/tex] as [tex]\( x \to a \)[/tex] can be found by taking the derivatives of the numerator and the denominator:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \][/tex]
3. Differentiate the numerator and denominator:
- The derivative of the numerator [tex]\( e^x - 1 \)[/tex] is [tex]\( e^x \)[/tex].
- The derivative of the denominator [tex]\( x \)[/tex] is 1.
4. Apply the derivatives to L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} \][/tex]
5. Evaluate the limit:
- As [tex]\( x \)[/tex] approaches 0, [tex]\( e^x \)[/tex] approaches [tex]\( e^0 = 1 \)[/tex].
[tex]\[ \lim_{x \to 0} e^x = 1 \][/tex]
Therefore, the limit exists and is equal to 1. Thus, we have:
[tex]\[ \lim _{x \rightarrow 0} \frac{e^x-1}{x} = 1 \][/tex]
1. Understand the problem: We need to find the limit as [tex]\( x \)[/tex] approaches 0 of the function [tex]\( \frac{e^x - 1}{x} \)[/tex].
2. Apply L'Hôpital's Rule: The indeterminate form [tex]\(\frac{0}{0}\)[/tex] suggests that we can use L'Hôpital's Rule. L'Hôpital's Rule states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], the limit of [tex]\(\frac{f(x)}{g(x)}\)[/tex] as [tex]\( x \to a \)[/tex] can be found by taking the derivatives of the numerator and the denominator:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \][/tex]
3. Differentiate the numerator and denominator:
- The derivative of the numerator [tex]\( e^x - 1 \)[/tex] is [tex]\( e^x \)[/tex].
- The derivative of the denominator [tex]\( x \)[/tex] is 1.
4. Apply the derivatives to L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} \][/tex]
5. Evaluate the limit:
- As [tex]\( x \)[/tex] approaches 0, [tex]\( e^x \)[/tex] approaches [tex]\( e^0 = 1 \)[/tex].
[tex]\[ \lim_{x \to 0} e^x = 1 \][/tex]
Therefore, the limit exists and is equal to 1. Thus, we have:
[tex]\[ \lim _{x \rightarrow 0} \frac{e^x-1}{x} = 1 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.