At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Evaluate the limit:
[tex]\[ \lim_{x \rightarrow 0} \frac{e^x - 1}{x} \][/tex]

Sagot :

To find the limit [tex]\(\lim _{x \rightarrow 0} \frac{e^x-1}{x}\)[/tex], follow these steps:

1. Understand the problem: We need to find the limit as [tex]\( x \)[/tex] approaches 0 of the function [tex]\( \frac{e^x - 1}{x} \)[/tex].

2. Apply L'Hôpital's Rule: The indeterminate form [tex]\(\frac{0}{0}\)[/tex] suggests that we can use L'Hôpital's Rule. L'Hôpital's Rule states that for limits of the form [tex]\(\frac{0}{0}\)[/tex] or [tex]\(\frac{\infty}{\infty}\)[/tex], the limit of [tex]\(\frac{f(x)}{g(x)}\)[/tex] as [tex]\( x \to a \)[/tex] can be found by taking the derivatives of the numerator and the denominator:
[tex]\[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \][/tex]

3. Differentiate the numerator and denominator:
- The derivative of the numerator [tex]\( e^x - 1 \)[/tex] is [tex]\( e^x \)[/tex].
- The derivative of the denominator [tex]\( x \)[/tex] is 1.

4. Apply the derivatives to L'Hôpital's Rule:
[tex]\[ \lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{e^x}{1} \][/tex]

5. Evaluate the limit:
- As [tex]\( x \)[/tex] approaches 0, [tex]\( e^x \)[/tex] approaches [tex]\( e^0 = 1 \)[/tex].
[tex]\[ \lim_{x \to 0} e^x = 1 \][/tex]

Therefore, the limit exists and is equal to 1. Thus, we have:
[tex]\[ \lim _{x \rightarrow 0} \frac{e^x-1}{x} = 1 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.