Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's go through the solution step-by-step.
### Step 1: Analyze Compound A
We are given the mass of Sodium (Na) and element Z in compound A:
- Mass of Na (in A): [tex]\(12.00\)[/tex] grams
- Mass of Z (in A): [tex]\(2.44\)[/tex] grams
Since the formula for compound A is [tex]\( \text{Na}_3 \text{Z} \)[/tex], the molar ratio of Na to Z can be represented as the ratio of their masses:
[tex]\[ \text{Molar Mass Ratio of Na to Z in A} = \frac{\text{Mass of Na}}{\text{Mass of Z}} = \frac{12.00}{2.44} \][/tex]
### Step 2: Examine Compound B
We are given the mass of Sodium (Na) and element Z in Compound B:
- Mass of Na (in B): [tex]\(3.45\)[/tex] grams
- Mass of Z (in B): [tex]\(0.700\)[/tex] grams
Since we aim to use the same molar ratio for consistency, we can calculate the mass of Z in Compound B using the given intact values.
### Step 3: Determine Mass of Z in Compound C
For Compound C, we know:
- Mass of Na (in C): [tex]\(14.00\)[/tex] grams
- Formula: [tex]\( \text{Na}_3 \text{Z} \)[/tex]
Since the compound forms the same molar ratio as in Compound A, to find the mass of Z in Compound C, we use:
[tex]\[ \text{Mass of Z (in C)} = \frac{\text{Mass of Na (in C)}}{\text{Molar Mass Ratio of Na to Z in A}} \][/tex]
### Step 4: Given Data for Compound D
- Mass of Na (in D): [tex]\(25.00\)[/tex] grams
- Mass of Z (in D): [tex]\(30.47\)[/tex] grams
Since these values are provided, we don't need any further calculations for Compound D.
### Calculated Results
Summarizing the calculated masses of element Z:
1. Compound A:
[tex]\[ \text{Mass of Z} = 2.44 \, \text{grams} \][/tex]
2. Compound B:
[tex]\[ \text{Mass of Z} = 0.700 \, \text{grams} \][/tex]
3. Compound C:
[tex]\[ \text{Mass of Z} = 2.8466666666666667 \, \text{grams} \][/tex]
4. Compound D:
[tex]\[ \text{Mass of Z} = 30.47 \, \text{grams} \][/tex]
Thus, from the provided data and calculations:
- For Compound A, the mass of Z is [tex]\(2.44\)[/tex] grams.
- For Compound B, the mass of Z is [tex]\(0.700\)[/tex] grams.
- For Compound C, the calculated mass of Z is [tex]\(2.8466666666666667\)[/tex] grams.
- For Compound D, the mass of Z is [tex]\(30.47\)[/tex] grams.
Hence, the mass of element Z in each specified compound is correctly calculated in a consistent manner, preserving the ratio consistent with Compound A.
### Step 1: Analyze Compound A
We are given the mass of Sodium (Na) and element Z in compound A:
- Mass of Na (in A): [tex]\(12.00\)[/tex] grams
- Mass of Z (in A): [tex]\(2.44\)[/tex] grams
Since the formula for compound A is [tex]\( \text{Na}_3 \text{Z} \)[/tex], the molar ratio of Na to Z can be represented as the ratio of their masses:
[tex]\[ \text{Molar Mass Ratio of Na to Z in A} = \frac{\text{Mass of Na}}{\text{Mass of Z}} = \frac{12.00}{2.44} \][/tex]
### Step 2: Examine Compound B
We are given the mass of Sodium (Na) and element Z in Compound B:
- Mass of Na (in B): [tex]\(3.45\)[/tex] grams
- Mass of Z (in B): [tex]\(0.700\)[/tex] grams
Since we aim to use the same molar ratio for consistency, we can calculate the mass of Z in Compound B using the given intact values.
### Step 3: Determine Mass of Z in Compound C
For Compound C, we know:
- Mass of Na (in C): [tex]\(14.00\)[/tex] grams
- Formula: [tex]\( \text{Na}_3 \text{Z} \)[/tex]
Since the compound forms the same molar ratio as in Compound A, to find the mass of Z in Compound C, we use:
[tex]\[ \text{Mass of Z (in C)} = \frac{\text{Mass of Na (in C)}}{\text{Molar Mass Ratio of Na to Z in A}} \][/tex]
### Step 4: Given Data for Compound D
- Mass of Na (in D): [tex]\(25.00\)[/tex] grams
- Mass of Z (in D): [tex]\(30.47\)[/tex] grams
Since these values are provided, we don't need any further calculations for Compound D.
### Calculated Results
Summarizing the calculated masses of element Z:
1. Compound A:
[tex]\[ \text{Mass of Z} = 2.44 \, \text{grams} \][/tex]
2. Compound B:
[tex]\[ \text{Mass of Z} = 0.700 \, \text{grams} \][/tex]
3. Compound C:
[tex]\[ \text{Mass of Z} = 2.8466666666666667 \, \text{grams} \][/tex]
4. Compound D:
[tex]\[ \text{Mass of Z} = 30.47 \, \text{grams} \][/tex]
Thus, from the provided data and calculations:
- For Compound A, the mass of Z is [tex]\(2.44\)[/tex] grams.
- For Compound B, the mass of Z is [tex]\(0.700\)[/tex] grams.
- For Compound C, the calculated mass of Z is [tex]\(2.8466666666666667\)[/tex] grams.
- For Compound D, the mass of Z is [tex]\(30.47\)[/tex] grams.
Hence, the mass of element Z in each specified compound is correctly calculated in a consistent manner, preserving the ratio consistent with Compound A.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.