Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through the solution step-by-step.
### Step 1: Analyze Compound A
We are given the mass of Sodium (Na) and element Z in compound A:
- Mass of Na (in A): [tex]\(12.00\)[/tex] grams
- Mass of Z (in A): [tex]\(2.44\)[/tex] grams
Since the formula for compound A is [tex]\( \text{Na}_3 \text{Z} \)[/tex], the molar ratio of Na to Z can be represented as the ratio of their masses:
[tex]\[ \text{Molar Mass Ratio of Na to Z in A} = \frac{\text{Mass of Na}}{\text{Mass of Z}} = \frac{12.00}{2.44} \][/tex]
### Step 2: Examine Compound B
We are given the mass of Sodium (Na) and element Z in Compound B:
- Mass of Na (in B): [tex]\(3.45\)[/tex] grams
- Mass of Z (in B): [tex]\(0.700\)[/tex] grams
Since we aim to use the same molar ratio for consistency, we can calculate the mass of Z in Compound B using the given intact values.
### Step 3: Determine Mass of Z in Compound C
For Compound C, we know:
- Mass of Na (in C): [tex]\(14.00\)[/tex] grams
- Formula: [tex]\( \text{Na}_3 \text{Z} \)[/tex]
Since the compound forms the same molar ratio as in Compound A, to find the mass of Z in Compound C, we use:
[tex]\[ \text{Mass of Z (in C)} = \frac{\text{Mass of Na (in C)}}{\text{Molar Mass Ratio of Na to Z in A}} \][/tex]
### Step 4: Given Data for Compound D
- Mass of Na (in D): [tex]\(25.00\)[/tex] grams
- Mass of Z (in D): [tex]\(30.47\)[/tex] grams
Since these values are provided, we don't need any further calculations for Compound D.
### Calculated Results
Summarizing the calculated masses of element Z:
1. Compound A:
[tex]\[ \text{Mass of Z} = 2.44 \, \text{grams} \][/tex]
2. Compound B:
[tex]\[ \text{Mass of Z} = 0.700 \, \text{grams} \][/tex]
3. Compound C:
[tex]\[ \text{Mass of Z} = 2.8466666666666667 \, \text{grams} \][/tex]
4. Compound D:
[tex]\[ \text{Mass of Z} = 30.47 \, \text{grams} \][/tex]
Thus, from the provided data and calculations:
- For Compound A, the mass of Z is [tex]\(2.44\)[/tex] grams.
- For Compound B, the mass of Z is [tex]\(0.700\)[/tex] grams.
- For Compound C, the calculated mass of Z is [tex]\(2.8466666666666667\)[/tex] grams.
- For Compound D, the mass of Z is [tex]\(30.47\)[/tex] grams.
Hence, the mass of element Z in each specified compound is correctly calculated in a consistent manner, preserving the ratio consistent with Compound A.
### Step 1: Analyze Compound A
We are given the mass of Sodium (Na) and element Z in compound A:
- Mass of Na (in A): [tex]\(12.00\)[/tex] grams
- Mass of Z (in A): [tex]\(2.44\)[/tex] grams
Since the formula for compound A is [tex]\( \text{Na}_3 \text{Z} \)[/tex], the molar ratio of Na to Z can be represented as the ratio of their masses:
[tex]\[ \text{Molar Mass Ratio of Na to Z in A} = \frac{\text{Mass of Na}}{\text{Mass of Z}} = \frac{12.00}{2.44} \][/tex]
### Step 2: Examine Compound B
We are given the mass of Sodium (Na) and element Z in Compound B:
- Mass of Na (in B): [tex]\(3.45\)[/tex] grams
- Mass of Z (in B): [tex]\(0.700\)[/tex] grams
Since we aim to use the same molar ratio for consistency, we can calculate the mass of Z in Compound B using the given intact values.
### Step 3: Determine Mass of Z in Compound C
For Compound C, we know:
- Mass of Na (in C): [tex]\(14.00\)[/tex] grams
- Formula: [tex]\( \text{Na}_3 \text{Z} \)[/tex]
Since the compound forms the same molar ratio as in Compound A, to find the mass of Z in Compound C, we use:
[tex]\[ \text{Mass of Z (in C)} = \frac{\text{Mass of Na (in C)}}{\text{Molar Mass Ratio of Na to Z in A}} \][/tex]
### Step 4: Given Data for Compound D
- Mass of Na (in D): [tex]\(25.00\)[/tex] grams
- Mass of Z (in D): [tex]\(30.47\)[/tex] grams
Since these values are provided, we don't need any further calculations for Compound D.
### Calculated Results
Summarizing the calculated masses of element Z:
1. Compound A:
[tex]\[ \text{Mass of Z} = 2.44 \, \text{grams} \][/tex]
2. Compound B:
[tex]\[ \text{Mass of Z} = 0.700 \, \text{grams} \][/tex]
3. Compound C:
[tex]\[ \text{Mass of Z} = 2.8466666666666667 \, \text{grams} \][/tex]
4. Compound D:
[tex]\[ \text{Mass of Z} = 30.47 \, \text{grams} \][/tex]
Thus, from the provided data and calculations:
- For Compound A, the mass of Z is [tex]\(2.44\)[/tex] grams.
- For Compound B, the mass of Z is [tex]\(0.700\)[/tex] grams.
- For Compound C, the calculated mass of Z is [tex]\(2.8466666666666667\)[/tex] grams.
- For Compound D, the mass of Z is [tex]\(30.47\)[/tex] grams.
Hence, the mass of element Z in each specified compound is correctly calculated in a consistent manner, preserving the ratio consistent with Compound A.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.