Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To convert the quadratic equation [tex]\( y = x^2 + 18x + 11 \)[/tex] into vertex form by completing the square, follow these steps:
1. Identify the coefficients:
[tex]\[ a = 1, \, b = 18, \, c = 11 \][/tex]
2. Write the quadratic equation in a suitable form for completing the square:
[tex]\[ y = x^2 + 18x + 11 \][/tex]
3. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the coefficient of [tex]\(x\)[/tex], which is 18, divide it by 2, and then square the result:
[tex]\[ \left(\frac{18}{2}\right)^2 = 81 \][/tex]
4. Add and subtract this square inside the equation to create a perfect square trinomial:
[tex]\[ y = x^2 + 18x + 81 - 81 + 11 \][/tex]
5. Group the perfect square trinomial and combine the constants:
[tex]\[ y = (x^2 + 18x + 81) - 81 + 11 \][/tex]
6. Rewrite the perfect square trinomial as a squared binomial:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
The equation in vertex form is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
In this form, [tex]\((x - h)^2 + k\)[/tex], the vertex is at [tex]\((h, k)\)[/tex]. Here, [tex]\(h = -9\)[/tex] and [tex]\(k = -70\)[/tex]. Be sure to include the sign of [tex]\(k\)[/tex], so in this case, [tex]\(k\)[/tex] is [tex]\(-70\)[/tex].
Therefore, the vertex form of the given equation is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
1. Identify the coefficients:
[tex]\[ a = 1, \, b = 18, \, c = 11 \][/tex]
2. Write the quadratic equation in a suitable form for completing the square:
[tex]\[ y = x^2 + 18x + 11 \][/tex]
3. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the coefficient of [tex]\(x\)[/tex], which is 18, divide it by 2, and then square the result:
[tex]\[ \left(\frac{18}{2}\right)^2 = 81 \][/tex]
4. Add and subtract this square inside the equation to create a perfect square trinomial:
[tex]\[ y = x^2 + 18x + 81 - 81 + 11 \][/tex]
5. Group the perfect square trinomial and combine the constants:
[tex]\[ y = (x^2 + 18x + 81) - 81 + 11 \][/tex]
6. Rewrite the perfect square trinomial as a squared binomial:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
The equation in vertex form is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
In this form, [tex]\((x - h)^2 + k\)[/tex], the vertex is at [tex]\((h, k)\)[/tex]. Here, [tex]\(h = -9\)[/tex] and [tex]\(k = -70\)[/tex]. Be sure to include the sign of [tex]\(k\)[/tex], so in this case, [tex]\(k\)[/tex] is [tex]\(-70\)[/tex].
Therefore, the vertex form of the given equation is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.