Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To convert the quadratic equation [tex]\( y = x^2 + 18x + 11 \)[/tex] into vertex form by completing the square, follow these steps:
1. Identify the coefficients:
[tex]\[ a = 1, \, b = 18, \, c = 11 \][/tex]
2. Write the quadratic equation in a suitable form for completing the square:
[tex]\[ y = x^2 + 18x + 11 \][/tex]
3. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the coefficient of [tex]\(x\)[/tex], which is 18, divide it by 2, and then square the result:
[tex]\[ \left(\frac{18}{2}\right)^2 = 81 \][/tex]
4. Add and subtract this square inside the equation to create a perfect square trinomial:
[tex]\[ y = x^2 + 18x + 81 - 81 + 11 \][/tex]
5. Group the perfect square trinomial and combine the constants:
[tex]\[ y = (x^2 + 18x + 81) - 81 + 11 \][/tex]
6. Rewrite the perfect square trinomial as a squared binomial:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
The equation in vertex form is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
In this form, [tex]\((x - h)^2 + k\)[/tex], the vertex is at [tex]\((h, k)\)[/tex]. Here, [tex]\(h = -9\)[/tex] and [tex]\(k = -70\)[/tex]. Be sure to include the sign of [tex]\(k\)[/tex], so in this case, [tex]\(k\)[/tex] is [tex]\(-70\)[/tex].
Therefore, the vertex form of the given equation is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
1. Identify the coefficients:
[tex]\[ a = 1, \, b = 18, \, c = 11 \][/tex]
2. Write the quadratic equation in a suitable form for completing the square:
[tex]\[ y = x^2 + 18x + 11 \][/tex]
3. Complete the square for the [tex]\(x\)[/tex] terms:
- Take the coefficient of [tex]\(x\)[/tex], which is 18, divide it by 2, and then square the result:
[tex]\[ \left(\frac{18}{2}\right)^2 = 81 \][/tex]
4. Add and subtract this square inside the equation to create a perfect square trinomial:
[tex]\[ y = x^2 + 18x + 81 - 81 + 11 \][/tex]
5. Group the perfect square trinomial and combine the constants:
[tex]\[ y = (x^2 + 18x + 81) - 81 + 11 \][/tex]
6. Rewrite the perfect square trinomial as a squared binomial:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
The equation in vertex form is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
In this form, [tex]\((x - h)^2 + k\)[/tex], the vertex is at [tex]\((h, k)\)[/tex]. Here, [tex]\(h = -9\)[/tex] and [tex]\(k = -70\)[/tex]. Be sure to include the sign of [tex]\(k\)[/tex], so in this case, [tex]\(k\)[/tex] is [tex]\(-70\)[/tex].
Therefore, the vertex form of the given equation is:
[tex]\[ y = (x + 9)^2 - 70 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.