Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the area of an equilateral triangle with a given semiperimeter of 6 meters, we'll follow these steps:
1. Determine the side length (a):
For an equilateral triangle, all three sides are equal. The semiperimeter [tex]\( s \)[/tex] is given by half the perimeter of the triangle, or:
[tex]\[ s = \frac{3a}{2} \][/tex]
Solving for the side length [tex]\( a \)[/tex], we get:
[tex]\[ a = \frac{2s}{3} \][/tex]
Substituting [tex]\( s = 6 \)[/tex] into the equation:
[tex]\[ a = \frac{2 \times 6}{3} = 4 \, \text{meters} \][/tex]
2. Apply Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] of a triangle is given by:
[tex]\[ A = \sqrt{s(s-a)(s-b)(s-c)} \][/tex]
Since this is an equilateral triangle, all sides are equal (i.e., [tex]\( a = b = c \)[/tex]). Hence:
[tex]\[ A = \sqrt{s(s-a)(s-a)(s-a)} \][/tex]
3. Substitute the known values:
Using [tex]\( s = 6 \)[/tex] and [tex]\( a = 4 \)[/tex]:
[tex]\[ A = \sqrt{6 \times (6-4) \times (6-4) \times (6-4)} \][/tex]
Simplify inside the square root:
[tex]\[ A = \sqrt{6 \times 2 \times 2 \times 2} = \sqrt{6 \times 8} = \sqrt{48} \][/tex]
4. Calculate the area:
[tex]\[ A = \sqrt{48} \approx 6.928203230275509 \, \text{square meters} \][/tex]
5. Round the area to the nearest square meter:
[tex]\[ \text{Rounded area} \approx 7 \, \text{square meters} \][/tex]
Therefore, the area of the equilateral triangle is approximately 7 square meters. The correct choice from the given options is 7 square meters.
1. Determine the side length (a):
For an equilateral triangle, all three sides are equal. The semiperimeter [tex]\( s \)[/tex] is given by half the perimeter of the triangle, or:
[tex]\[ s = \frac{3a}{2} \][/tex]
Solving for the side length [tex]\( a \)[/tex], we get:
[tex]\[ a = \frac{2s}{3} \][/tex]
Substituting [tex]\( s = 6 \)[/tex] into the equation:
[tex]\[ a = \frac{2 \times 6}{3} = 4 \, \text{meters} \][/tex]
2. Apply Heron's formula:
Heron's formula for the area [tex]\( A \)[/tex] of a triangle is given by:
[tex]\[ A = \sqrt{s(s-a)(s-b)(s-c)} \][/tex]
Since this is an equilateral triangle, all sides are equal (i.e., [tex]\( a = b = c \)[/tex]). Hence:
[tex]\[ A = \sqrt{s(s-a)(s-a)(s-a)} \][/tex]
3. Substitute the known values:
Using [tex]\( s = 6 \)[/tex] and [tex]\( a = 4 \)[/tex]:
[tex]\[ A = \sqrt{6 \times (6-4) \times (6-4) \times (6-4)} \][/tex]
Simplify inside the square root:
[tex]\[ A = \sqrt{6 \times 2 \times 2 \times 2} = \sqrt{6 \times 8} = \sqrt{48} \][/tex]
4. Calculate the area:
[tex]\[ A = \sqrt{48} \approx 6.928203230275509 \, \text{square meters} \][/tex]
5. Round the area to the nearest square meter:
[tex]\[ \text{Rounded area} \approx 7 \, \text{square meters} \][/tex]
Therefore, the area of the equilateral triangle is approximately 7 square meters. The correct choice from the given options is 7 square meters.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.