Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] by completing the square, follow these detailed steps:
1. Divide the entire equation by 3 to make the coefficient of [tex]\( x^2 \)[/tex] equal to 1:
[tex]\[ x^2 + 8x - 4 = 0 \][/tex]
2. Move the constant term to the other side of the equation:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square on the left side. To do this, add and subtract the square of half the coefficient of [tex]\( x \)[/tex], which is [tex]\( \left(\frac{8}{2}\right)^2 = 16 \)[/tex]:
[tex]\[ x^2 + 8x + 16 = 4 + 16 \][/tex]
Thus, the equation becomes:
[tex]\[ (x + 4)^2 = 20 \][/tex]
4. Take the square root of both sides:
[tex]\[ x + 4 = \pm\sqrt{20} \][/tex]
5. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
So, the solution to the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] is:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
- The constant term to be placed in Input Box 1 is -4.
- The number inside the radical to be placed in Input Box 2 is 20.
[tex]\[ \boxed{-4} \pm \sqrt{\boxed{20}} \][/tex]
1. Divide the entire equation by 3 to make the coefficient of [tex]\( x^2 \)[/tex] equal to 1:
[tex]\[ x^2 + 8x - 4 = 0 \][/tex]
2. Move the constant term to the other side of the equation:
[tex]\[ x^2 + 8x = 4 \][/tex]
3. Complete the square on the left side. To do this, add and subtract the square of half the coefficient of [tex]\( x \)[/tex], which is [tex]\( \left(\frac{8}{2}\right)^2 = 16 \)[/tex]:
[tex]\[ x^2 + 8x + 16 = 4 + 16 \][/tex]
Thus, the equation becomes:
[tex]\[ (x + 4)^2 = 20 \][/tex]
4. Take the square root of both sides:
[tex]\[ x + 4 = \pm\sqrt{20} \][/tex]
5. Solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
So, the solution to the equation [tex]\( 3x^2 + 24x - 12 = 0 \)[/tex] is:
[tex]\[ x = -4 \pm \sqrt{20} \][/tex]
- The constant term to be placed in Input Box 1 is -4.
- The number inside the radical to be placed in Input Box 2 is 20.
[tex]\[ \boxed{-4} \pm \sqrt{\boxed{20}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.