Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the volume of a cone where the base diameter and the height are both [tex]\(x\)[/tex] units, we'll use the formula for the volume of a cone:
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
1. Identify the radius and height:
- Since the diameter of the base is [tex]\(x\)[/tex], the radius [tex]\(r\)[/tex] is half of the diameter:
[tex]\[ r = \frac{x}{2} \][/tex]
- The height [tex]\(h\)[/tex] of the cone is given as [tex]\(x\)[/tex]:
[tex]\[ h = x \][/tex]
2. Substitute the radius and height into the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{x}{2}\right)^2 x \][/tex]
3. Simplify the expression inside the parentheses:
[tex]\[ \left(\frac{x}{2}\right)^2 = \frac{x^2}{4} \][/tex]
4. Substitute [tex]\(\frac{x^2}{4}\)[/tex] back into the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{x^2}{4}\right) x \][/tex]
5. Multiply the terms together:
[tex]\[ V = \frac{1}{3} \pi \frac{x^2}{4} x \][/tex]
[tex]\[ V = \frac{1}{3} \pi \frac{x^3}{4} \][/tex]
[tex]\[ V = \frac{\pi x^3}{12} \][/tex]
So, the expression that represents the volume of the cone is:
[tex]\[ \boxed{\frac{1}{12} \pi x^3} \][/tex]
This matches the final option given in your list.
[tex]\[ V = \frac{1}{3} \pi r^2 h \][/tex]
1. Identify the radius and height:
- Since the diameter of the base is [tex]\(x\)[/tex], the radius [tex]\(r\)[/tex] is half of the diameter:
[tex]\[ r = \frac{x}{2} \][/tex]
- The height [tex]\(h\)[/tex] of the cone is given as [tex]\(x\)[/tex]:
[tex]\[ h = x \][/tex]
2. Substitute the radius and height into the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{x}{2}\right)^2 x \][/tex]
3. Simplify the expression inside the parentheses:
[tex]\[ \left(\frac{x}{2}\right)^2 = \frac{x^2}{4} \][/tex]
4. Substitute [tex]\(\frac{x^2}{4}\)[/tex] back into the volume formula:
[tex]\[ V = \frac{1}{3} \pi \left(\frac{x^2}{4}\right) x \][/tex]
5. Multiply the terms together:
[tex]\[ V = \frac{1}{3} \pi \frac{x^2}{4} x \][/tex]
[tex]\[ V = \frac{1}{3} \pi \frac{x^3}{4} \][/tex]
[tex]\[ V = \frac{\pi x^3}{12} \][/tex]
So, the expression that represents the volume of the cone is:
[tex]\[ \boxed{\frac{1}{12} \pi x^3} \][/tex]
This matches the final option given in your list.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.