Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve this problem step-by-step.
1. Convert Distance to Meters:
Given the distance between the plates is [tex]\( 2.5 \, \text{cm} \)[/tex]. We need to convert this distance to meters because the standard unit for electric fields is in meters.
[tex]\[ 2.5 \, \text{cm} = 2.5 \times 10^{-2} \, \text{m} = 0.025 \, \text{m} \][/tex]
2. Calculate the Electric Potential Difference ([tex]\(\Delta V\)[/tex]):
The electric potential difference can be calculated using the formula:
[tex]\[ \Delta V = E \times d \][/tex]
where [tex]\( E \)[/tex] is the electric field, and [tex]\( d \)[/tex] is the distance.
Given [tex]\( E = 800.0 \frac{N}{C} \)[/tex] and [tex]\( d = 0.025 \, \text{m} \)[/tex],
[tex]\[ \Delta V = 800.0 \, \frac{N}{C} \times 0.025 \, \text{m} \][/tex]
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
3. Calculate the Work Done (W):
The work done by the electric field in moving a charge between the plates is given by:
[tex]\[ W = \Delta V \times q \][/tex]
where [tex]\( q \)[/tex] is the charge of the electron.
Given [tex]\( q = 1.602 \times 10^{-19} \, \text{C} \)[/tex]
[tex]\[ W = 20.0 \, \text{V} \times 1.602 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ W = 32.04 \times 10^{-19} \, \text{J} \][/tex]
4. Express Work Done in Units of [tex]\( 10^{-18} \, \text{J} \)[/tex]:
To express the work in units of [tex]\( 10^{-18} \, \text{J} \)[/tex],
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
Thus, the electric potential difference and the work done are:
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
1. Convert Distance to Meters:
Given the distance between the plates is [tex]\( 2.5 \, \text{cm} \)[/tex]. We need to convert this distance to meters because the standard unit for electric fields is in meters.
[tex]\[ 2.5 \, \text{cm} = 2.5 \times 10^{-2} \, \text{m} = 0.025 \, \text{m} \][/tex]
2. Calculate the Electric Potential Difference ([tex]\(\Delta V\)[/tex]):
The electric potential difference can be calculated using the formula:
[tex]\[ \Delta V = E \times d \][/tex]
where [tex]\( E \)[/tex] is the electric field, and [tex]\( d \)[/tex] is the distance.
Given [tex]\( E = 800.0 \frac{N}{C} \)[/tex] and [tex]\( d = 0.025 \, \text{m} \)[/tex],
[tex]\[ \Delta V = 800.0 \, \frac{N}{C} \times 0.025 \, \text{m} \][/tex]
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
3. Calculate the Work Done (W):
The work done by the electric field in moving a charge between the plates is given by:
[tex]\[ W = \Delta V \times q \][/tex]
where [tex]\( q \)[/tex] is the charge of the electron.
Given [tex]\( q = 1.602 \times 10^{-19} \, \text{C} \)[/tex]
[tex]\[ W = 20.0 \, \text{V} \times 1.602 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ W = 32.04 \times 10^{-19} \, \text{J} \][/tex]
4. Express Work Done in Units of [tex]\( 10^{-18} \, \text{J} \)[/tex]:
To express the work in units of [tex]\( 10^{-18} \, \text{J} \)[/tex],
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
Thus, the electric potential difference and the work done are:
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.