At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step.
1. Convert Distance to Meters:
Given the distance between the plates is [tex]\( 2.5 \, \text{cm} \)[/tex]. We need to convert this distance to meters because the standard unit for electric fields is in meters.
[tex]\[ 2.5 \, \text{cm} = 2.5 \times 10^{-2} \, \text{m} = 0.025 \, \text{m} \][/tex]
2. Calculate the Electric Potential Difference ([tex]\(\Delta V\)[/tex]):
The electric potential difference can be calculated using the formula:
[tex]\[ \Delta V = E \times d \][/tex]
where [tex]\( E \)[/tex] is the electric field, and [tex]\( d \)[/tex] is the distance.
Given [tex]\( E = 800.0 \frac{N}{C} \)[/tex] and [tex]\( d = 0.025 \, \text{m} \)[/tex],
[tex]\[ \Delta V = 800.0 \, \frac{N}{C} \times 0.025 \, \text{m} \][/tex]
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
3. Calculate the Work Done (W):
The work done by the electric field in moving a charge between the plates is given by:
[tex]\[ W = \Delta V \times q \][/tex]
where [tex]\( q \)[/tex] is the charge of the electron.
Given [tex]\( q = 1.602 \times 10^{-19} \, \text{C} \)[/tex]
[tex]\[ W = 20.0 \, \text{V} \times 1.602 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ W = 32.04 \times 10^{-19} \, \text{J} \][/tex]
4. Express Work Done in Units of [tex]\( 10^{-18} \, \text{J} \)[/tex]:
To express the work in units of [tex]\( 10^{-18} \, \text{J} \)[/tex],
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
Thus, the electric potential difference and the work done are:
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
1. Convert Distance to Meters:
Given the distance between the plates is [tex]\( 2.5 \, \text{cm} \)[/tex]. We need to convert this distance to meters because the standard unit for electric fields is in meters.
[tex]\[ 2.5 \, \text{cm} = 2.5 \times 10^{-2} \, \text{m} = 0.025 \, \text{m} \][/tex]
2. Calculate the Electric Potential Difference ([tex]\(\Delta V\)[/tex]):
The electric potential difference can be calculated using the formula:
[tex]\[ \Delta V = E \times d \][/tex]
where [tex]\( E \)[/tex] is the electric field, and [tex]\( d \)[/tex] is the distance.
Given [tex]\( E = 800.0 \frac{N}{C} \)[/tex] and [tex]\( d = 0.025 \, \text{m} \)[/tex],
[tex]\[ \Delta V = 800.0 \, \frac{N}{C} \times 0.025 \, \text{m} \][/tex]
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
3. Calculate the Work Done (W):
The work done by the electric field in moving a charge between the plates is given by:
[tex]\[ W = \Delta V \times q \][/tex]
where [tex]\( q \)[/tex] is the charge of the electron.
Given [tex]\( q = 1.602 \times 10^{-19} \, \text{C} \)[/tex]
[tex]\[ W = 20.0 \, \text{V} \times 1.602 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ W = 32.04 \times 10^{-19} \, \text{J} \][/tex]
4. Express Work Done in Units of [tex]\( 10^{-18} \, \text{J} \)[/tex]:
To express the work in units of [tex]\( 10^{-18} \, \text{J} \)[/tex],
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
Thus, the electric potential difference and the work done are:
[tex]\[ \Delta V = 20.0 \, \text{V} \][/tex]
[tex]\[ W = 3.204 \times 10^{-18} \, \text{J} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.