Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the value of [tex]\( f(-2) \)[/tex] for the given piecewise function, we follow these steps:
1. Identify the correct interval for the input value:
We need to find the value of [tex]\( f(x) \)[/tex] at [tex]\( x = -2 \)[/tex]. Look at the conditions of the piecewise function:
[tex]\[ f(x) = \begin{cases} -x^2, & x < -2 \\ 3, & -2 \leq x < 0 \\ x + 2, & x \geq 0 \end{cases} \][/tex]
2. Determine which part of the piecewise function applies:
Since [tex]\( x = -2 \)[/tex], we check which interval includes [tex]\(-2\)[/tex]:
- For [tex]\( x < -2 \)[/tex], the function is [tex]\( f(x) = -x^2 \)[/tex]. This interval does not include [tex]\(-2\)[/tex].
- For [tex]\(-2 \leq x < 0 \)[/tex], the function is [tex]\( f(x) = 3 \)[/tex]. This interval includes [tex]\(-2\)[/tex].
3. Find the corresponding output value:
Since [tex]\(-2\)[/tex] is in the interval [tex]\(-2 \leq x < 0\)[/tex], we use the function defined in this interval, which is [tex]\( f(x) = 3 \)[/tex].
Therefore, [tex]\( f(-2) = 3 \)[/tex].
Among the given choices:
- [tex]$f(-2) = -6$[/tex]
- [tex]$f(-2) = -4$[/tex]
- [tex]$f(-2) = 0$[/tex]
- [tex]$f(-2) = 3$[/tex]
The correct answer is [tex]\(\boxed{3}\)[/tex].
1. Identify the correct interval for the input value:
We need to find the value of [tex]\( f(x) \)[/tex] at [tex]\( x = -2 \)[/tex]. Look at the conditions of the piecewise function:
[tex]\[ f(x) = \begin{cases} -x^2, & x < -2 \\ 3, & -2 \leq x < 0 \\ x + 2, & x \geq 0 \end{cases} \][/tex]
2. Determine which part of the piecewise function applies:
Since [tex]\( x = -2 \)[/tex], we check which interval includes [tex]\(-2\)[/tex]:
- For [tex]\( x < -2 \)[/tex], the function is [tex]\( f(x) = -x^2 \)[/tex]. This interval does not include [tex]\(-2\)[/tex].
- For [tex]\(-2 \leq x < 0 \)[/tex], the function is [tex]\( f(x) = 3 \)[/tex]. This interval includes [tex]\(-2\)[/tex].
3. Find the corresponding output value:
Since [tex]\(-2\)[/tex] is in the interval [tex]\(-2 \leq x < 0\)[/tex], we use the function defined in this interval, which is [tex]\( f(x) = 3 \)[/tex].
Therefore, [tex]\( f(-2) = 3 \)[/tex].
Among the given choices:
- [tex]$f(-2) = -6$[/tex]
- [tex]$f(-2) = -4$[/tex]
- [tex]$f(-2) = 0$[/tex]
- [tex]$f(-2) = 3$[/tex]
The correct answer is [tex]\(\boxed{3}\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.