Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the given quadratic equation [tex]\(x^2 + 1 = 2x - 3\)[/tex], we first need to rearrange it into standard form [tex]\(ax^2 + bx + c = 0\)[/tex].
Starting with the equation:
[tex]\[ x^2 + 1 = 2x - 3 \][/tex]
We move all terms to one side to set the equation to zero:
[tex]\[ x^2 + 1 - 2x + 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 2x + 4 = 0 \][/tex]
In the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], we identify the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex].
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex] into the quadratic formula, we get:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)} \][/tex]
Now, let's examine each of the provided expressions to determine which one matches our result:
A. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
B. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - (1)(4)}}{2(2)}\)[/tex]
C. [tex]\(\frac{-2 \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
D. [tex]\(\frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)}\)[/tex]
Evaluating each option:
- Option A correctly matches the form that we derived from the quadratic formula.
- Option B has an incorrect coefficient for [tex]\(c\)[/tex] in the discriminant and incorrect denominator.
- Option C has an incorrect sign for the numerator term [tex]\(-b\)[/tex].
- Option D has incorrect values in the discriminant and [tex]\(-b\)[/tex] terms.
Therefore, the expression that correctly sets up the quadratic formula for the equation [tex]\(x^2 - 2x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}} \][/tex]
Hence, the correct expression is option A.
Starting with the equation:
[tex]\[ x^2 + 1 = 2x - 3 \][/tex]
We move all terms to one side to set the equation to zero:
[tex]\[ x^2 + 1 - 2x + 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 2x + 4 = 0 \][/tex]
In the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], we identify the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex].
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex] into the quadratic formula, we get:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)} \][/tex]
Now, let's examine each of the provided expressions to determine which one matches our result:
A. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
B. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - (1)(4)}}{2(2)}\)[/tex]
C. [tex]\(\frac{-2 \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
D. [tex]\(\frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)}\)[/tex]
Evaluating each option:
- Option A correctly matches the form that we derived from the quadratic formula.
- Option B has an incorrect coefficient for [tex]\(c\)[/tex] in the discriminant and incorrect denominator.
- Option C has an incorrect sign for the numerator term [tex]\(-b\)[/tex].
- Option D has incorrect values in the discriminant and [tex]\(-b\)[/tex] terms.
Therefore, the expression that correctly sets up the quadratic formula for the equation [tex]\(x^2 - 2x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}} \][/tex]
Hence, the correct expression is option A.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.