Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the given quadratic equation [tex]\(x^2 + 1 = 2x - 3\)[/tex], we first need to rearrange it into standard form [tex]\(ax^2 + bx + c = 0\)[/tex].
Starting with the equation:
[tex]\[ x^2 + 1 = 2x - 3 \][/tex]
We move all terms to one side to set the equation to zero:
[tex]\[ x^2 + 1 - 2x + 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 2x + 4 = 0 \][/tex]
In the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], we identify the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex].
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex] into the quadratic formula, we get:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)} \][/tex]
Now, let's examine each of the provided expressions to determine which one matches our result:
A. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
B. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - (1)(4)}}{2(2)}\)[/tex]
C. [tex]\(\frac{-2 \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
D. [tex]\(\frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)}\)[/tex]
Evaluating each option:
- Option A correctly matches the form that we derived from the quadratic formula.
- Option B has an incorrect coefficient for [tex]\(c\)[/tex] in the discriminant and incorrect denominator.
- Option C has an incorrect sign for the numerator term [tex]\(-b\)[/tex].
- Option D has incorrect values in the discriminant and [tex]\(-b\)[/tex] terms.
Therefore, the expression that correctly sets up the quadratic formula for the equation [tex]\(x^2 - 2x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}} \][/tex]
Hence, the correct expression is option A.
Starting with the equation:
[tex]\[ x^2 + 1 = 2x - 3 \][/tex]
We move all terms to one side to set the equation to zero:
[tex]\[ x^2 + 1 - 2x + 3 = 0 \][/tex]
This simplifies to:
[tex]\[ x^2 - 2x + 4 = 0 \][/tex]
In the standard form [tex]\(ax^2 + bx + c = 0\)[/tex], we identify the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex].
The quadratic formula is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Substituting the coefficients [tex]\(a = 1\)[/tex], [tex]\(b = -2\)[/tex], and [tex]\(c = 4\)[/tex] into the quadratic formula, we get:
[tex]\[ x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)} \][/tex]
Now, let's examine each of the provided expressions to determine which one matches our result:
A. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
B. [tex]\(\frac{-(-2) \pm \sqrt{(-2)^2 - (1)(4)}}{2(2)}\)[/tex]
C. [tex]\(\frac{-2 \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}\)[/tex]
D. [tex]\(\frac{-2 \pm \sqrt{(2)^2 - 4(1)(-2)}}{2(1)}\)[/tex]
Evaluating each option:
- Option A correctly matches the form that we derived from the quadratic formula.
- Option B has an incorrect coefficient for [tex]\(c\)[/tex] in the discriminant and incorrect denominator.
- Option C has an incorrect sign for the numerator term [tex]\(-b\)[/tex].
- Option D has incorrect values in the discriminant and [tex]\(-b\)[/tex] terms.
Therefore, the expression that correctly sets up the quadratic formula for the equation [tex]\(x^2 - 2x + 4 = 0\)[/tex] is:
[tex]\[ \boxed{\frac{-(-2) \pm \sqrt{(-2)^2 - 4(1)(4)}}{2(1)}} \][/tex]
Hence, the correct expression is option A.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.