Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given equations are cubic functions, we need to identify which equations represent polynomials with a degree of 3. A cubic function is characterized by the highest exponent of the variable [tex]\( x \)[/tex] being 3. Let's examine each equation in detail:
1. [tex]\( y = x^2 + x + 1 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 2.
- This is not a cubic function.
2. [tex]\( y = \frac{1}{5} x^3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
3. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
4. [tex]\( y = \frac{3}{x} \)[/tex]
- This can be rewritten as [tex]\( y = 3x^{-1} \)[/tex].
- The highest power of [tex]\( x \)[/tex] is -1, not 3.
- This is not a cubic function.
5. [tex]\( y = x - 4 x^3 - 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
6. [tex]\( y = \sqrt[3]{x} + 4 \)[/tex]
- This can be rewritten as [tex]\( y = x^{1/3} + 4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] is [tex]\( 1/3 \)[/tex], not 3.
- This is not a cubic function.
Thus, the equations that are cubic functions are:
[tex]\[ \frac{1}{5} x^3, \quad 4 x^3 + x^2 + 2 x + 5, \quad x - 4 x^3 - 5 \][/tex]
These correspond to the following indices in the original list:
1. [tex]\( y = \frac{1}{5} x^3 \)[/tex] (2nd equation)
2. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex] (3rd equation)
3. [tex]\( y = x - 4 x^3 - 5 \)[/tex] (5th equation)
Therefore, the indices of the cubic functions are [tex]\([1, 2, 4]\)[/tex].
1. [tex]\( y = x^2 + x + 1 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 2.
- This is not a cubic function.
2. [tex]\( y = \frac{1}{5} x^3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
3. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
4. [tex]\( y = \frac{3}{x} \)[/tex]
- This can be rewritten as [tex]\( y = 3x^{-1} \)[/tex].
- The highest power of [tex]\( x \)[/tex] is -1, not 3.
- This is not a cubic function.
5. [tex]\( y = x - 4 x^3 - 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
6. [tex]\( y = \sqrt[3]{x} + 4 \)[/tex]
- This can be rewritten as [tex]\( y = x^{1/3} + 4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] is [tex]\( 1/3 \)[/tex], not 3.
- This is not a cubic function.
Thus, the equations that are cubic functions are:
[tex]\[ \frac{1}{5} x^3, \quad 4 x^3 + x^2 + 2 x + 5, \quad x - 4 x^3 - 5 \][/tex]
These correspond to the following indices in the original list:
1. [tex]\( y = \frac{1}{5} x^3 \)[/tex] (2nd equation)
2. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex] (3rd equation)
3. [tex]\( y = x - 4 x^3 - 5 \)[/tex] (5th equation)
Therefore, the indices of the cubic functions are [tex]\([1, 2, 4]\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.