Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which of the given equations are cubic functions, we need to identify which equations represent polynomials with a degree of 3. A cubic function is characterized by the highest exponent of the variable [tex]\( x \)[/tex] being 3. Let's examine each equation in detail:
1. [tex]\( y = x^2 + x + 1 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 2.
- This is not a cubic function.
2. [tex]\( y = \frac{1}{5} x^3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
3. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
4. [tex]\( y = \frac{3}{x} \)[/tex]
- This can be rewritten as [tex]\( y = 3x^{-1} \)[/tex].
- The highest power of [tex]\( x \)[/tex] is -1, not 3.
- This is not a cubic function.
5. [tex]\( y = x - 4 x^3 - 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
6. [tex]\( y = \sqrt[3]{x} + 4 \)[/tex]
- This can be rewritten as [tex]\( y = x^{1/3} + 4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] is [tex]\( 1/3 \)[/tex], not 3.
- This is not a cubic function.
Thus, the equations that are cubic functions are:
[tex]\[ \frac{1}{5} x^3, \quad 4 x^3 + x^2 + 2 x + 5, \quad x - 4 x^3 - 5 \][/tex]
These correspond to the following indices in the original list:
1. [tex]\( y = \frac{1}{5} x^3 \)[/tex] (2nd equation)
2. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex] (3rd equation)
3. [tex]\( y = x - 4 x^3 - 5 \)[/tex] (5th equation)
Therefore, the indices of the cubic functions are [tex]\([1, 2, 4]\)[/tex].
1. [tex]\( y = x^2 + x + 1 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 2.
- This is not a cubic function.
2. [tex]\( y = \frac{1}{5} x^3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
3. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
4. [tex]\( y = \frac{3}{x} \)[/tex]
- This can be rewritten as [tex]\( y = 3x^{-1} \)[/tex].
- The highest power of [tex]\( x \)[/tex] is -1, not 3.
- This is not a cubic function.
5. [tex]\( y = x - 4 x^3 - 5 \)[/tex]
- The highest power of [tex]\( x \)[/tex] is 3.
- This is a cubic function.
6. [tex]\( y = \sqrt[3]{x} + 4 \)[/tex]
- This can be rewritten as [tex]\( y = x^{1/3} + 4 \)[/tex].
- The highest power of [tex]\( x \)[/tex] is [tex]\( 1/3 \)[/tex], not 3.
- This is not a cubic function.
Thus, the equations that are cubic functions are:
[tex]\[ \frac{1}{5} x^3, \quad 4 x^3 + x^2 + 2 x + 5, \quad x - 4 x^3 - 5 \][/tex]
These correspond to the following indices in the original list:
1. [tex]\( y = \frac{1}{5} x^3 \)[/tex] (2nd equation)
2. [tex]\( y = 4 x^3 + x^2 + 2 x + 5 \)[/tex] (3rd equation)
3. [tex]\( y = x - 4 x^3 - 5 \)[/tex] (5th equation)
Therefore, the indices of the cubic functions are [tex]\([1, 2, 4]\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.