Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve this step by step to determine the correct answer.
We are given one solution to the quadratic function [tex]\( h \)[/tex]:
[tex]\[ -4 + 7i \][/tex]
### Step 1: Identify the nature of the given solution
The given solution is a complex number. For quadratic functions with real coefficients, the solutions appear in conjugate pairs. This means if [tex]\( a + bi \)[/tex] is a solution, then [tex]\( a - bi \)[/tex] must also be a solution.
### Step 2: Find the conjugate of the given solution
The conjugate of a complex number [tex]\( a + bi \)[/tex] is [tex]\( a - bi \)[/tex]. Here, our complex number is [tex]\( -4 + 7i \)[/tex].
- Real part ([tex]\( a \)[/tex]): [tex]\(-4\)[/tex]
- Imaginary part ([tex]\( bi \)[/tex]): [tex]\(7i\)[/tex]
The conjugate will keep the real part the same and change the sign of the imaginary part:
[tex]\[ -4 - 7i \][/tex]
### Step 3: Match the conjugate to the options given
Now we need to match this conjugate solution with the options provided:
A. Function [tex]\( h \)[/tex] has no other solutions.
B. The other solution to function [tex]\( h \)[/tex] is [tex]\( -4 - 7i \)[/tex].
C. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 - 7i \)[/tex].
D. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 + 7i \)[/tex].
Option B states that the other solution is [tex]\( -4 - 7i \)[/tex], which matches our conjugate.
### Conclusion
The correct answer is:
[tex]\[ \boxed{\text{B. The other solution to function } h \text{ is } -4-7 i.} \][/tex]
We are given one solution to the quadratic function [tex]\( h \)[/tex]:
[tex]\[ -4 + 7i \][/tex]
### Step 1: Identify the nature of the given solution
The given solution is a complex number. For quadratic functions with real coefficients, the solutions appear in conjugate pairs. This means if [tex]\( a + bi \)[/tex] is a solution, then [tex]\( a - bi \)[/tex] must also be a solution.
### Step 2: Find the conjugate of the given solution
The conjugate of a complex number [tex]\( a + bi \)[/tex] is [tex]\( a - bi \)[/tex]. Here, our complex number is [tex]\( -4 + 7i \)[/tex].
- Real part ([tex]\( a \)[/tex]): [tex]\(-4\)[/tex]
- Imaginary part ([tex]\( bi \)[/tex]): [tex]\(7i\)[/tex]
The conjugate will keep the real part the same and change the sign of the imaginary part:
[tex]\[ -4 - 7i \][/tex]
### Step 3: Match the conjugate to the options given
Now we need to match this conjugate solution with the options provided:
A. Function [tex]\( h \)[/tex] has no other solutions.
B. The other solution to function [tex]\( h \)[/tex] is [tex]\( -4 - 7i \)[/tex].
C. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 - 7i \)[/tex].
D. The other solution to function [tex]\( h \)[/tex] is [tex]\( 4 + 7i \)[/tex].
Option B states that the other solution is [tex]\( -4 - 7i \)[/tex], which matches our conjugate.
### Conclusion
The correct answer is:
[tex]\[ \boxed{\text{B. The other solution to function } h \text{ is } -4-7 i.} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.