Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the range of the function [tex]\( f(x) = -(x+5)(x+1) \)[/tex], follow these steps:
1. Identify the Type of Function:
The given function is a quadratic function (a polynomial of degree 2).
2. Identify the Leading Coefficient:
From the given function, we can observe that the quadratic term will open downwards because of the negative sign in front.
3. Convert Function to Standard Form:
Expand the expression:
[tex]\[ f(x) = -(x+5)(x+1) = -[x^2 + 6x + 5] = -x^2 - 6x - 5 \][/tex]
4. Determine the Vertex Form:
The standard form of a parabola is [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -5 \)[/tex].
5. Find the Vertex:
The x-coordinate of the vertex for a parabola given by [tex]\( f(x) = ax^2 + bx + c \)[/tex] is found using [tex]\( x = -\frac{b}{2a} \)[/tex].
Given [tex]\( a = -1 \)[/tex] and [tex]\( b = -6 \)[/tex]:
[tex]\[ x = -\frac{-6}{2(-1)} = \frac{6}{-2} = -3 \][/tex]
6. Calculate the Maximum Value (y-coordinate of the Vertex):
Substitute [tex]\( x = -3 \)[/tex] back into the original function to find the y-coordinate:
[tex]\[ f(-3) = -((-3+5)(-3+1)) = -((2)(-2)) = -(-4) = 4 \][/tex]
7. Determine the Range:
Since the parabola opens downward and has its vertex at [tex]\( (-3, 4) \)[/tex], the maximum value occurs at [tex]\( y = 4 \)[/tex]. Therefore, the function takes all values less than or equal to this maximum value.
Thus, the range of the function [tex]\( f(x) = -(x+5)(x+1) \)[/tex] is:
[tex]\[ \boxed{\text{all real numbers less than or equal to 4}} \][/tex]
1. Identify the Type of Function:
The given function is a quadratic function (a polynomial of degree 2).
2. Identify the Leading Coefficient:
From the given function, we can observe that the quadratic term will open downwards because of the negative sign in front.
3. Convert Function to Standard Form:
Expand the expression:
[tex]\[ f(x) = -(x+5)(x+1) = -[x^2 + 6x + 5] = -x^2 - 6x - 5 \][/tex]
4. Determine the Vertex Form:
The standard form of a parabola is [tex]\( f(x) = ax^2 + bx + c \)[/tex], where [tex]\( a = -1 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = -5 \)[/tex].
5. Find the Vertex:
The x-coordinate of the vertex for a parabola given by [tex]\( f(x) = ax^2 + bx + c \)[/tex] is found using [tex]\( x = -\frac{b}{2a} \)[/tex].
Given [tex]\( a = -1 \)[/tex] and [tex]\( b = -6 \)[/tex]:
[tex]\[ x = -\frac{-6}{2(-1)} = \frac{6}{-2} = -3 \][/tex]
6. Calculate the Maximum Value (y-coordinate of the Vertex):
Substitute [tex]\( x = -3 \)[/tex] back into the original function to find the y-coordinate:
[tex]\[ f(-3) = -((-3+5)(-3+1)) = -((2)(-2)) = -(-4) = 4 \][/tex]
7. Determine the Range:
Since the parabola opens downward and has its vertex at [tex]\( (-3, 4) \)[/tex], the maximum value occurs at [tex]\( y = 4 \)[/tex]. Therefore, the function takes all values less than or equal to this maximum value.
Thus, the range of the function [tex]\( f(x) = -(x+5)(x+1) \)[/tex] is:
[tex]\[ \boxed{\text{all real numbers less than or equal to 4}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.