Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

In a right triangle, what is the ratio of the opposite side of [tex]\theta[/tex] to the hypotenuse?

Sagot :

In a right triangle, when dealing with an angle [tex]\(\theta\)[/tex], we often refer to three primary trigonometric ratios: sine, cosine, and tangent. The sine of an angle [tex]\(\theta\)[/tex] is defined as the ratio of the length of the opposite side to the length of the hypotenuse.

Let's go through the steps to find the sine of [tex]\(\theta\)[/tex]:

1. Identify the Opposite Side and Hypotenuse:
- The opposite side to the angle [tex]\(\theta\)[/tex] is given as 3 units.
- The hypotenuse of the triangle is given as 5 units.

2. Apply the Definition of Sine:
- The sine of an angle [tex]\(\theta\)[/tex] is calculated using the formula:
[tex]\[ \sin(\theta) = \frac{\text{opposite side}}{\text{hypotenuse}} \][/tex]

3. Substitute the Given Values:
- Substitute the length of the opposite side (3 units) and the length of the hypotenuse (5 units) into the formula:
[tex]\[ \sin(\theta) = \frac{3}{5} \][/tex]

4. Perform the Division:
- Calculate the division of 3 by 5:
[tex]\[ \frac{3}{5} = 0.6 \][/tex]

Thus, the sine of the angle [tex]\(\theta\)[/tex] is [tex]\(0.6\)[/tex].