Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the problem of finding the gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth, let's go through the relevant formulas and applications step-by-step.
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.