Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve the problem of finding the gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth, let's go through the relevant formulas and applications step-by-step.
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.