At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem of finding the gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth, let's go through the relevant formulas and applications step-by-step.
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
1. Gravitational Acceleration on Earth's Surface:
The gravitational acceleration [tex]\( g \)[/tex] on the Earth's surface is approximately [tex]\( 9.8 \ \text{m/s}^2 \)[/tex].
2. Distance from the Center of the Earth:
Given:
- Radius of the Earth [tex]\( R = 6.38 \times 10^6 \ \text{m} \)[/tex]
- Height above the surface [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex]
So, the total distance from the center of the Earth is [tex]\( R + h = 6.38 \times 10^6 + 6.38 \times 10^6 = 2 \times 6.38 \times 10^6 \ \text{m} \)[/tex].
3. Gravitational Acceleration at Height [tex]\( h \)[/tex]:
The formula for gravitational acceleration at a height [tex]\( h \)[/tex] from the surface of the Earth is given by:
[tex]\[ g' = \frac{g}{(1 + \frac{h}{R})^2} \][/tex]
4. Simplifying the Expression:
Substituting [tex]\( h = R \)[/tex] into the formula:
[tex]\[ g' = \frac{g}{(1 + \frac{R}{R})^2} = \frac{g}{(1 + 1)^2} = \frac{g}{2^2} = \frac{g}{4} \][/tex]
Therefore, the gravitational acceleration at a distance of [tex]\( h = 6.38 \times 10^6 \ \text{m} \)[/tex] from the surface of the Earth is:
[tex]\(\boxed{\frac{g}{4}}\)[/tex]
Given the multiple-choice options, the correct answer is B. [tex]\(\frac{g}{4}\)[/tex]. This simplifies to the numerical value 2.45 m/s² when using [tex]\( g = 9.8 \)[/tex] m/s².
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.