Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's simplify the expression [tex]\(\left(x^2\right)^5\left(x^5\right)^2\)[/tex] using the rules of exponents step-by-step.
### Step 1: Apply the Power of a Power Rule
First, we need to simplify each part of the expression [tex]\(\left(x^2\right)^5\)[/tex] and [tex]\(\left(x^5\right)^2\)[/tex] using the power of a power rule which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
1. Simplify [tex]\(\left(x^2\right)^5\)[/tex]:
[tex]\[ (x^2)^5 = x^{2 \cdot 5} = x^{10} \][/tex]
2. Simplify [tex]\(\left(x^5\right)^2\)[/tex]:
[tex]\[ (x^5)^2 = x^{5 \cdot 2} = x^{10} \][/tex]
### Step 2: Apply the Product of Powers Rule
Now that we have simplified the expression to [tex]\(x^{10} \cdot x^{10}\)[/tex], we use the product of powers rule which states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex].
Combine the exponents:
[tex]\[ x^{10} \cdot x^{10} = x^{10+10} = x^{20} \][/tex]
### Conclusion
Thus, the simplified expression is:
[tex]\[ \left(x^2\right)^5\left(x^5\right)^2 = x^{20} \][/tex]
So, the simplified expression is [tex]\(x^{20}\)[/tex].
### Step 1: Apply the Power of a Power Rule
First, we need to simplify each part of the expression [tex]\(\left(x^2\right)^5\)[/tex] and [tex]\(\left(x^5\right)^2\)[/tex] using the power of a power rule which states [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].
1. Simplify [tex]\(\left(x^2\right)^5\)[/tex]:
[tex]\[ (x^2)^5 = x^{2 \cdot 5} = x^{10} \][/tex]
2. Simplify [tex]\(\left(x^5\right)^2\)[/tex]:
[tex]\[ (x^5)^2 = x^{5 \cdot 2} = x^{10} \][/tex]
### Step 2: Apply the Product of Powers Rule
Now that we have simplified the expression to [tex]\(x^{10} \cdot x^{10}\)[/tex], we use the product of powers rule which states [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex].
Combine the exponents:
[tex]\[ x^{10} \cdot x^{10} = x^{10+10} = x^{20} \][/tex]
### Conclusion
Thus, the simplified expression is:
[tex]\[ \left(x^2\right)^5\left(x^5\right)^2 = x^{20} \][/tex]
So, the simplified expression is [tex]\(x^{20}\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.