Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's solve the given system of equations step by step to determine the correct statement about step 3.
The given system of equations is:
[tex]\[ \begin{array}{rcl} 2x - y & = & 12 \quad \text{(Equation 1)} \\ -3x - 5y & = & -5 \quad \text{(Equation 2)} \end{array} \][/tex]
Step 1: Multiply Equation 1 by -5 to align the coefficients of y.
[tex]\[ -5 \times (2x - y) = -5 \times 12 \][/tex]
[tex]\[ -10x + 5y = -60 \quad \text{(Equation 3)} \][/tex]
Step 2: Add Equation 3 to Equation 2 to eliminate y.
[tex]\[ \begin{array}{rcl} -10x + 5y & = & -60 \\ -3x - 5y & = & -5 \\ \hline -13x & = & -65 \end{array} \][/tex]
Step 3: Solve for x.
[tex]\[ -13x = -65 \][/tex]
[tex]\[ x = \frac{-65}{-13} = 5 \][/tex]
Step 4: Substitute [tex]\( x = 5 \)[/tex] back into Equation 1 to solve for y.
[tex]\[ 2x - y = 12 \][/tex]
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 12 - 10 \][/tex]
[tex]\[ y = -2 \][/tex]
The solution to the system of equations is [tex]\( (5, -2) \)[/tex].
Now, to verify which statement is correct about Step 3:
Step 3: When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, they form the equation [tex]\( -13x = -65 \)[/tex].
We found that solving this equation gave us [tex]\( x = 5 \)[/tex], which, when substituted back into the original system, yields [tex]\( y = -2 \)[/tex]. This means the equation [tex]\(-13x = -65\)[/tex] shares a common solution with the original system of equations.
Thus, the correct statement is:
C. When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, a third linear equation, [tex]\(-13x = -65\)[/tex], is formed, and it shares a common solution with the original equations.
The given system of equations is:
[tex]\[ \begin{array}{rcl} 2x - y & = & 12 \quad \text{(Equation 1)} \\ -3x - 5y & = & -5 \quad \text{(Equation 2)} \end{array} \][/tex]
Step 1: Multiply Equation 1 by -5 to align the coefficients of y.
[tex]\[ -5 \times (2x - y) = -5 \times 12 \][/tex]
[tex]\[ -10x + 5y = -60 \quad \text{(Equation 3)} \][/tex]
Step 2: Add Equation 3 to Equation 2 to eliminate y.
[tex]\[ \begin{array}{rcl} -10x + 5y & = & -60 \\ -3x - 5y & = & -5 \\ \hline -13x & = & -65 \end{array} \][/tex]
Step 3: Solve for x.
[tex]\[ -13x = -65 \][/tex]
[tex]\[ x = \frac{-65}{-13} = 5 \][/tex]
Step 4: Substitute [tex]\( x = 5 \)[/tex] back into Equation 1 to solve for y.
[tex]\[ 2x - y = 12 \][/tex]
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 12 - 10 \][/tex]
[tex]\[ y = -2 \][/tex]
The solution to the system of equations is [tex]\( (5, -2) \)[/tex].
Now, to verify which statement is correct about Step 3:
Step 3: When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, they form the equation [tex]\( -13x = -65 \)[/tex].
We found that solving this equation gave us [tex]\( x = 5 \)[/tex], which, when substituted back into the original system, yields [tex]\( y = -2 \)[/tex]. This means the equation [tex]\(-13x = -65\)[/tex] shares a common solution with the original system of equations.
Thus, the correct statement is:
C. When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, a third linear equation, [tex]\(-13x = -65\)[/tex], is formed, and it shares a common solution with the original equations.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.