At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve the given system of equations step by step to determine the correct statement about step 3.
The given system of equations is:
[tex]\[ \begin{array}{rcl} 2x - y & = & 12 \quad \text{(Equation 1)} \\ -3x - 5y & = & -5 \quad \text{(Equation 2)} \end{array} \][/tex]
Step 1: Multiply Equation 1 by -5 to align the coefficients of y.
[tex]\[ -5 \times (2x - y) = -5 \times 12 \][/tex]
[tex]\[ -10x + 5y = -60 \quad \text{(Equation 3)} \][/tex]
Step 2: Add Equation 3 to Equation 2 to eliminate y.
[tex]\[ \begin{array}{rcl} -10x + 5y & = & -60 \\ -3x - 5y & = & -5 \\ \hline -13x & = & -65 \end{array} \][/tex]
Step 3: Solve for x.
[tex]\[ -13x = -65 \][/tex]
[tex]\[ x = \frac{-65}{-13} = 5 \][/tex]
Step 4: Substitute [tex]\( x = 5 \)[/tex] back into Equation 1 to solve for y.
[tex]\[ 2x - y = 12 \][/tex]
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 12 - 10 \][/tex]
[tex]\[ y = -2 \][/tex]
The solution to the system of equations is [tex]\( (5, -2) \)[/tex].
Now, to verify which statement is correct about Step 3:
Step 3: When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, they form the equation [tex]\( -13x = -65 \)[/tex].
We found that solving this equation gave us [tex]\( x = 5 \)[/tex], which, when substituted back into the original system, yields [tex]\( y = -2 \)[/tex]. This means the equation [tex]\(-13x = -65\)[/tex] shares a common solution with the original system of equations.
Thus, the correct statement is:
C. When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, a third linear equation, [tex]\(-13x = -65\)[/tex], is formed, and it shares a common solution with the original equations.
The given system of equations is:
[tex]\[ \begin{array}{rcl} 2x - y & = & 12 \quad \text{(Equation 1)} \\ -3x - 5y & = & -5 \quad \text{(Equation 2)} \end{array} \][/tex]
Step 1: Multiply Equation 1 by -5 to align the coefficients of y.
[tex]\[ -5 \times (2x - y) = -5 \times 12 \][/tex]
[tex]\[ -10x + 5y = -60 \quad \text{(Equation 3)} \][/tex]
Step 2: Add Equation 3 to Equation 2 to eliminate y.
[tex]\[ \begin{array}{rcl} -10x + 5y & = & -60 \\ -3x - 5y & = & -5 \\ \hline -13x & = & -65 \end{array} \][/tex]
Step 3: Solve for x.
[tex]\[ -13x = -65 \][/tex]
[tex]\[ x = \frac{-65}{-13} = 5 \][/tex]
Step 4: Substitute [tex]\( x = 5 \)[/tex] back into Equation 1 to solve for y.
[tex]\[ 2x - y = 12 \][/tex]
[tex]\[ 2(5) - y = 12 \][/tex]
[tex]\[ 10 - y = 12 \][/tex]
[tex]\[ -y = 12 - 10 \][/tex]
[tex]\[ y = -2 \][/tex]
The solution to the system of equations is [tex]\( (5, -2) \)[/tex].
Now, to verify which statement is correct about Step 3:
Step 3: When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, they form the equation [tex]\( -13x = -65 \)[/tex].
We found that solving this equation gave us [tex]\( x = 5 \)[/tex], which, when substituted back into the original system, yields [tex]\( y = -2 \)[/tex]. This means the equation [tex]\(-13x = -65\)[/tex] shares a common solution with the original system of equations.
Thus, the correct statement is:
C. When the equations [tex]\(-10x + 5y = -60\)[/tex] and [tex]\(-3x - 5y = -5\)[/tex] are added together, a third linear equation, [tex]\(-13x = -65\)[/tex], is formed, and it shares a common solution with the original equations.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.