At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem, let's carefully analyze the given information and determine the vertex and range of the quadratic function [tex]\( h(x) \)[/tex].
1. Understanding the pattern:
The table lists values of [tex]\( h(x) \)[/tex] at specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & h(x) \\ \hline -6 & 15 \\ \hline -5 & 10 \\ \hline -4 & 7 \\ \hline -3 & 6 \\ \hline -2 & 7 \\ \hline -1 & 10 \\ \hline \end{array} \][/tex]
2. Identify the vertex:
For a quadratic function [tex]\( h(x) = ax^2 + bx + c \)[/tex], the vertex form is [tex]\( h(x) = a(x - h)^2 + k \)[/tex]. The vertex is the point where the function reaches its minimum or maximum value.
Observing the given values, [tex]\( h(x) \)[/tex] decreases until [tex]\( x = -3 \)[/tex], where it reaches the minimum value of 6, and then increases. Therefore, the vertex of the parabola is at:
[tex]\[ (-3, 6) \][/tex]
3. Determine the range:
Since the quadratic function opens upwards (as indicated by the pattern of decreasing and then increasing values), the range is all [tex]\( y \)[/tex]-values starting from the minimum value 6 to positive infinity.
Thus, the range can be expressed as:
[tex]\[ 6 \leq y \leq \infty \][/tex]
4. Match with the given choices:
- Vertex [tex]\( (-3, 6) \)[/tex]; Range [tex]\( 6 \leq y \leq \infty \)[/tex]
The correct answer is:
Vertex [tex]\( (-3, 6) \)[/tex]; Range [tex]\( 6 \leq y \leq \infty \)[/tex]
1. Understanding the pattern:
The table lists values of [tex]\( h(x) \)[/tex] at specific points:
[tex]\[ \begin{array}{|c|c|} \hline x & h(x) \\ \hline -6 & 15 \\ \hline -5 & 10 \\ \hline -4 & 7 \\ \hline -3 & 6 \\ \hline -2 & 7 \\ \hline -1 & 10 \\ \hline \end{array} \][/tex]
2. Identify the vertex:
For a quadratic function [tex]\( h(x) = ax^2 + bx + c \)[/tex], the vertex form is [tex]\( h(x) = a(x - h)^2 + k \)[/tex]. The vertex is the point where the function reaches its minimum or maximum value.
Observing the given values, [tex]\( h(x) \)[/tex] decreases until [tex]\( x = -3 \)[/tex], where it reaches the minimum value of 6, and then increases. Therefore, the vertex of the parabola is at:
[tex]\[ (-3, 6) \][/tex]
3. Determine the range:
Since the quadratic function opens upwards (as indicated by the pattern of decreasing and then increasing values), the range is all [tex]\( y \)[/tex]-values starting from the minimum value 6 to positive infinity.
Thus, the range can be expressed as:
[tex]\[ 6 \leq y \leq \infty \][/tex]
4. Match with the given choices:
- Vertex [tex]\( (-3, 6) \)[/tex]; Range [tex]\( 6 \leq y \leq \infty \)[/tex]
The correct answer is:
Vertex [tex]\( (-3, 6) \)[/tex]; Range [tex]\( 6 \leq y \leq \infty \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.