Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What value of [tex]x[/tex] makes this proportion true?

[tex]\[
\frac{x}{6} = \frac{36}{24}
\][/tex]

A. 7
B. 18
C. 8
D. 9


Sagot :

Let's solve the proportion step by step.

We start with the given proportion:
[tex]\[ \frac{x}{6} = \frac{36}{24} \][/tex]

To find the value of [tex]\( x \)[/tex], we can use cross-multiplication. Cross-multiplication involves multiplying the numerator of one fraction by the denominator of the other fraction and setting the two products equal. That is, we multiply [tex]\( x \)[/tex] by 24 and 6 by 36:
[tex]\[ x \cdot 24 = 6 \cdot 36 \][/tex]

Next, let's simplify the right-hand side:
[tex]\[ x \cdot 24 = 216 \][/tex]

To solve for [tex]\( x \)[/tex], we need to isolate [tex]\( x \)[/tex]. We do this by dividing both sides of the equation by 24:
[tex]\[ x = \frac{216}{24} \][/tex]

When we perform the division:
[tex]\[ x = 9 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] that makes the proportion true is:
[tex]\[ \boxed{9} \][/tex]