Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

A cab company charges according to the following rate chart. Which graph correctly represents the charge, [tex]\( y \)[/tex] dollars, for a cab ride of [tex]\( x \)[/tex] miles?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Cab Rates by Mile} \\
\hline Miles & Charge \\
\hline Flag drop fee (0 miles) & \[tex]$5.00 \\
\hline \(0 \leq x \ \textless \ 10\) miles & \$[/tex]1.00 per mile \\
\hline [tex]\(x \geq 10\)[/tex] miles & \$2.00 per mile for each mile over 10 \\
\hline
\end{tabular}

A. Graph A

B. Graph B

C. Graph C

D. Graph D


Sagot :

To understand which graph correctly represents the charge for a cab ride of [tex]\( x \)[/tex] miles, let's break down the charges based on the described rates.

1. Flag Drop Fee (0 miles):
- For a ride of 0 miles, the charge is \[tex]$5.00. So, when \( x = 0 \), \( y = 5.0 \). 2. For \( 0 \leq x < 10 \) miles: - Each mile from 0 to less than 10 miles costs \$[/tex]1.00 per mile in addition to the \[tex]$5.00 flag drop fee. - Therefore, if \( x \) is the number of miles, the formula for the total charge \( y \) is: \[ y = 5.0 + 1.0 \cdot x \] 3. For \( x \geq 10 \) miles: - The first 10 miles are charged at \$[/tex]1.00 per mile and cost a total of \[tex]$10.00 plus the initial \$[/tex]5.00 flag drop fee, making it \[tex]$15.00. - Any miles beyond 10 are charged at \$[/tex]2.00 per mile.
- If [tex]\( x \)[/tex] is the number of miles where [tex]\( x \geq 10 \)[/tex], the formula for the total charge [tex]\( y \)[/tex] is:
[tex]\[ y = 15.0 + 2.0 \cdot (x - 10) \][/tex]

Let us compile the charges for a sample of miles:

[tex]\[ \begin{array}{|c|c|} \hline \text{Miles} & \text{Charge (\$)} \\ \hline 0 & 5.0 \\ 1 & 6.0 \\ 2 & 7.0 \\ 3 & 8.0 \\ 4 & 9.0 \\ 5 & 10.0 \\ 6 & 11.0 \\ 7 & 12.0 \\ 8 & 13.0 \\ 9 & 14.0 \\ 10 & 15.0 \\ 11 & 17.0 \\ 12 & 19.0 \\ 13 & 21.0 \\ 14 & 23.0 \\ 15 & 25.0 \\ 16 & 27.0 \\ 17 & 29.0 \\ 18 & 31.0 \\ 19 & 33.0 \\ 20 & 35.0 \\ \hline \end{array} \][/tex]

With these values:
- The charge starts from \[tex]$5.0 at \( x = 0 \). - From \( x = 1 \) to \( x = 9 \), the charge increases linearly by $[/tex]1.00 for each mile.
- At [tex]\( x = 10 \)[/tex], the charge is \[tex]$15.0. - For \( x > 10 \), the charge increases by $[/tex]2.00 per mile starting from \$15.0 at [tex]\( x = 10 \)[/tex].

With these insights, the graph should have:
- An initial point at [tex]\( (0, 5.0) \)[/tex].
- A linear increase with a slope of 1 from [tex]\( x = 0 \)[/tex] to [tex]\( x = 10 \)[/tex].
- A linear increase with a slope of 2 starting from [tex]\( (10, 15.0) \)[/tex].

Therefore, the correct graph will show a piecewise linear function with the above-described properties.