Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given functions represent exponential growth, let's analyze them one by one.
1. Function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x + 2 \][/tex]
This is a linear function, as it represents a straight-line equation with a slope of 1 and a y-intercept of 2. Linear functions are not exponential growth.
2. Function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x \][/tex]
This function is of the form [tex]\( a \cdot b^x \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex]. For exponential growth, [tex]\( b \)[/tex] needs to be greater than 1. Here, [tex]\( b \)[/tex] is 2, which meets the criteria for exponential growth.
3. Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3x \][/tex]
This is another linear function, where the slope is 3. Like [tex]\( f(x) \)[/tex], linear functions do not represent exponential growth.
4. Function [tex]\( k(x) \)[/tex]:
[tex]\[ k(x) = x^2 \][/tex]
This is a quadratic function because it has the variable [tex]\( x \)[/tex] raised to the power of 2. Quadratic functions describe parabolic shapes and are not exponential growth functions.
Based on our analysis, the function that represents exponential growth is:
[tex]\[ y = g(x) = 2^x \][/tex]
1. Function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x + 2 \][/tex]
This is a linear function, as it represents a straight-line equation with a slope of 1 and a y-intercept of 2. Linear functions are not exponential growth.
2. Function [tex]\( g(x) \)[/tex]:
[tex]\[ g(x) = 2^x \][/tex]
This function is of the form [tex]\( a \cdot b^x \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = 2 \)[/tex]. For exponential growth, [tex]\( b \)[/tex] needs to be greater than 1. Here, [tex]\( b \)[/tex] is 2, which meets the criteria for exponential growth.
3. Function [tex]\( h(x) \)[/tex]:
[tex]\[ h(x) = 3x \][/tex]
This is another linear function, where the slope is 3. Like [tex]\( f(x) \)[/tex], linear functions do not represent exponential growth.
4. Function [tex]\( k(x) \)[/tex]:
[tex]\[ k(x) = x^2 \][/tex]
This is a quadratic function because it has the variable [tex]\( x \)[/tex] raised to the power of 2. Quadratic functions describe parabolic shapes and are not exponential growth functions.
Based on our analysis, the function that represents exponential growth is:
[tex]\[ y = g(x) = 2^x \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.