Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

The height of a rocket a given number of seconds after it is released is modeled by [tex]h(t) = -16t^2 + 32t + 10[/tex]. What does [tex]t[/tex] represent?

A. The number of seconds after the rocket is released
B. The initial height of the rocket
C. The initial velocity of the rocket
D. The height of the rocket after [tex]t[/tex] seconds

Sagot :

To solve the question about what the variable [tex]\( t \)[/tex] represents in the given height equation [tex]\( h(t) = -16t^2 + 32t + 10 \)[/tex], let's break it down step-by-step.

1. Understand the Equation: The equation [tex]\( h(t) = -16t^2 + 32t + 10 \)[/tex] is a quadratic equation that describes the height of the rocket as a function of time [tex]\( t \)[/tex]. Here, [tex]\( h(t) \)[/tex] represents the height of the rocket at a specific time [tex]\( t \)[/tex].

2. Identify Parts of the Quadratic Equation:
- The term [tex]\( -16t^2 \)[/tex] indicates how the height changes with time due to the acceleration of gravity (assuming it's modeled in feet per second squared).
- The term [tex]\( 32t \)[/tex] represents the initial velocity effect on the height.
- The constant term [tex]\( 10 \)[/tex] represents the initial height of the rocket at the moment of its release.

3. What Does [tex]\( t \)[/tex] Represent?
- In the context of this equation, [tex]\( t \)[/tex] is placed in a position where it multiplies with time-dependent factors and affects the changing height of the rocket.
- Therefore, [tex]\( t \)[/tex] directly influences the height [tex]\( h(t) \)[/tex] based on how much time has passed since the rocket was released.

Given this understanding and analyzing the options:

- Option (a): [tex]\( t \)[/tex] is "the number of seconds after the rocket is released" aligns perfectly with the role of [tex]\( t \)[/tex] in the equation. It signifies the elapsed time affecting the calculated height at any given moment.
- Option (b): "the initial height of the rocket" is incorrect because the initial height is represented by the constant term [tex]\( 10 \)[/tex] when [tex]\( t = 0 \)[/tex].
- Option (c): "the initial velocity of the rocket" is incorrect since the term representing the initial velocity effect is [tex]\( 32t \)[/tex] and [tex]\( t \)[/tex] itself is not the initial velocity.
- Option (d): "the height of the rocket after [tex]\( t \)[/tex] seconds" is incorrect because [tex]\( h(t) \)[/tex] represents the height, not [tex]\( t \)[/tex].

Based on the analysis, the correct interpretation is:
[tex]\( t \)[/tex] represents the number of seconds after the rocket is released.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.