Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of adding the numbers [tex]\(14_{\text{six}}\)[/tex] and [tex]\(15_{\text{six}}\)[/tex] in base-6, follow these steps:
1. Convert Each Number from Base-6 to Base-10:
- The number [tex]\(14_{\text{six}}\)[/tex] can be converted to base-10 as follows:
[tex]\[ 1 \times 6^1 + 4 \times 6^0 = 6 + 4 = 10_{\text{ten}} \][/tex]
- The number [tex]\(15_{\text{six}}\)[/tex] can be converted to base-10 as follows:
[tex]\[ 1 \times 6^1 + 5 \times 6^0 = 6 + 5 = 11_{\text{ten}} \][/tex]
2. Perform the Addition of the Base-10 Numbers:
- Now we add [tex]\(10_{\text{ten}}\)[/tex] and [tex]\(11_{\text{ten}}\)[/tex]:
[tex]\[ 10 + 11 = 21_{\text{ten}} \][/tex]
3. Convert the Sum from Base-10 back to Base-6:
- To convert [tex]\(21_{\text{ten}}\)[/tex] into base-6, we find the remainders when dividing by 6:
- [tex]\(21 \div 6 = 3\)[/tex] with a remainder of [tex]\(3\)[/tex], so the least significant digit is [tex]\(3\)[/tex].
- Next, take the quotient [tex]\(3\)[/tex] and divide by [tex]\(6\)[/tex]:
[tex]\[ 3 \div 6 = 0 \text{ (quotient) with a remainder of 3} \][/tex]
- Thus, [tex]\(21_{\text{ten}}\)[/tex] converts to [tex]\(33_{\text{six}}\)[/tex] (read the remainders from top to bottom).
Therefore, the final result of adding [tex]\(14_{\text{six}}\)[/tex] and [tex]\(15_{\text{six}}\)[/tex] is:
[tex]\[ 33_{\text{six}} \][/tex]
1. Convert Each Number from Base-6 to Base-10:
- The number [tex]\(14_{\text{six}}\)[/tex] can be converted to base-10 as follows:
[tex]\[ 1 \times 6^1 + 4 \times 6^0 = 6 + 4 = 10_{\text{ten}} \][/tex]
- The number [tex]\(15_{\text{six}}\)[/tex] can be converted to base-10 as follows:
[tex]\[ 1 \times 6^1 + 5 \times 6^0 = 6 + 5 = 11_{\text{ten}} \][/tex]
2. Perform the Addition of the Base-10 Numbers:
- Now we add [tex]\(10_{\text{ten}}\)[/tex] and [tex]\(11_{\text{ten}}\)[/tex]:
[tex]\[ 10 + 11 = 21_{\text{ten}} \][/tex]
3. Convert the Sum from Base-10 back to Base-6:
- To convert [tex]\(21_{\text{ten}}\)[/tex] into base-6, we find the remainders when dividing by 6:
- [tex]\(21 \div 6 = 3\)[/tex] with a remainder of [tex]\(3\)[/tex], so the least significant digit is [tex]\(3\)[/tex].
- Next, take the quotient [tex]\(3\)[/tex] and divide by [tex]\(6\)[/tex]:
[tex]\[ 3 \div 6 = 0 \text{ (quotient) with a remainder of 3} \][/tex]
- Thus, [tex]\(21_{\text{ten}}\)[/tex] converts to [tex]\(33_{\text{six}}\)[/tex] (read the remainders from top to bottom).
Therefore, the final result of adding [tex]\(14_{\text{six}}\)[/tex] and [tex]\(15_{\text{six}}\)[/tex] is:
[tex]\[ 33_{\text{six}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.