At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine if two events [tex]\( A \)[/tex] (rolling a number greater than 4) and [tex]\( B \)[/tex] (rolling an even number) are independent, we need to check if the probability of their intersection [tex]\( P(A \cap B) \)[/tex] equals the product of their individual probabilities [tex]\( P(A) \times P(B) \)[/tex].
First, let’s define the probabilities:
1. [tex]\( P(A) \)[/tex] is the probability of rolling a number greater than 4. On a six-sided die, the possible outcomes greater than 4 are 5 and 6. Therefore:
[tex]\[ P(A) = \frac{2}{6} \][/tex]
2. [tex]\( P(B) \)[/tex] is the probability of rolling an even number. The even numbers on a six-sided die are 2, 4, and 6. Therefore:
[tex]\[ P(B) = \frac{3}{6} \][/tex]
3. [tex]\( P(A \cap B) \)[/tex] is the probability of both events happening (rolling a number that is both greater than 4 and even). The only number that fits this criterion is 6. Therefore:
[tex]\[ P(A \cap B) = \frac{1}{6} \][/tex]
For events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the following condition must hold:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, let’s compute [tex]\( P(A) \times P(B) \)[/tex]:
[tex]\[ P(A) \times P(B) = \frac{2}{6} \times \frac{3}{6} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, [tex]\( P(A \cap B) = P(A) \times P(B) \)[/tex] holds true.
Now, let’s double-check with the given question by examining each option for the necessary calculations:
1. [tex]\(\frac{\frac{2}{6}}{\frac{3}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3} \quad \text{and} \quad \frac{3}{6} = 0.5 \quad \Rightarrow \quad \frac{2}{3} \neq 0.5 \][/tex]
2. [tex]\(\frac{\frac{3}{6}}{\frac{1}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{1}{6}} = 3 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 3 \neq 0.333... \][/tex]
3. [tex]\(\frac{\frac{3}{6}}{\frac{2}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{2}{6}} = \frac{3}{2} = 1.5 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 1.5 \neq 0.333... \][/tex]
4. [tex]\(\frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} = \frac{1}{2} = 0.5 \quad \text{and} \quad\frac{3}{6} = 0.5 \quad \Rightarrow \quad 0.5 = 0.5 \][/tex]
Based on the comparisons, option [tex]\( \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \)[/tex] correctly represents the calculation used to determine the independence condition that fails in this given context.
Therefore, the correct answer is:
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \][/tex]
First, let’s define the probabilities:
1. [tex]\( P(A) \)[/tex] is the probability of rolling a number greater than 4. On a six-sided die, the possible outcomes greater than 4 are 5 and 6. Therefore:
[tex]\[ P(A) = \frac{2}{6} \][/tex]
2. [tex]\( P(B) \)[/tex] is the probability of rolling an even number. The even numbers on a six-sided die are 2, 4, and 6. Therefore:
[tex]\[ P(B) = \frac{3}{6} \][/tex]
3. [tex]\( P(A \cap B) \)[/tex] is the probability of both events happening (rolling a number that is both greater than 4 and even). The only number that fits this criterion is 6. Therefore:
[tex]\[ P(A \cap B) = \frac{1}{6} \][/tex]
For events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the following condition must hold:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, let’s compute [tex]\( P(A) \times P(B) \)[/tex]:
[tex]\[ P(A) \times P(B) = \frac{2}{6} \times \frac{3}{6} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, [tex]\( P(A \cap B) = P(A) \times P(B) \)[/tex] holds true.
Now, let’s double-check with the given question by examining each option for the necessary calculations:
1. [tex]\(\frac{\frac{2}{6}}{\frac{3}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3} \quad \text{and} \quad \frac{3}{6} = 0.5 \quad \Rightarrow \quad \frac{2}{3} \neq 0.5 \][/tex]
2. [tex]\(\frac{\frac{3}{6}}{\frac{1}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{1}{6}} = 3 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 3 \neq 0.333... \][/tex]
3. [tex]\(\frac{\frac{3}{6}}{\frac{2}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{2}{6}} = \frac{3}{2} = 1.5 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 1.5 \neq 0.333... \][/tex]
4. [tex]\(\frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} = \frac{1}{2} = 0.5 \quad \text{and} \quad\frac{3}{6} = 0.5 \quad \Rightarrow \quad 0.5 = 0.5 \][/tex]
Based on the comparisons, option [tex]\( \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \)[/tex] correctly represents the calculation used to determine the independence condition that fails in this given context.
Therefore, the correct answer is:
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.