Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if two events [tex]\( A \)[/tex] (rolling a number greater than 4) and [tex]\( B \)[/tex] (rolling an even number) are independent, we need to check if the probability of their intersection [tex]\( P(A \cap B) \)[/tex] equals the product of their individual probabilities [tex]\( P(A) \times P(B) \)[/tex].
First, let’s define the probabilities:
1. [tex]\( P(A) \)[/tex] is the probability of rolling a number greater than 4. On a six-sided die, the possible outcomes greater than 4 are 5 and 6. Therefore:
[tex]\[ P(A) = \frac{2}{6} \][/tex]
2. [tex]\( P(B) \)[/tex] is the probability of rolling an even number. The even numbers on a six-sided die are 2, 4, and 6. Therefore:
[tex]\[ P(B) = \frac{3}{6} \][/tex]
3. [tex]\( P(A \cap B) \)[/tex] is the probability of both events happening (rolling a number that is both greater than 4 and even). The only number that fits this criterion is 6. Therefore:
[tex]\[ P(A \cap B) = \frac{1}{6} \][/tex]
For events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the following condition must hold:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, let’s compute [tex]\( P(A) \times P(B) \)[/tex]:
[tex]\[ P(A) \times P(B) = \frac{2}{6} \times \frac{3}{6} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, [tex]\( P(A \cap B) = P(A) \times P(B) \)[/tex] holds true.
Now, let’s double-check with the given question by examining each option for the necessary calculations:
1. [tex]\(\frac{\frac{2}{6}}{\frac{3}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3} \quad \text{and} \quad \frac{3}{6} = 0.5 \quad \Rightarrow \quad \frac{2}{3} \neq 0.5 \][/tex]
2. [tex]\(\frac{\frac{3}{6}}{\frac{1}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{1}{6}} = 3 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 3 \neq 0.333... \][/tex]
3. [tex]\(\frac{\frac{3}{6}}{\frac{2}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{2}{6}} = \frac{3}{2} = 1.5 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 1.5 \neq 0.333... \][/tex]
4. [tex]\(\frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} = \frac{1}{2} = 0.5 \quad \text{and} \quad\frac{3}{6} = 0.5 \quad \Rightarrow \quad 0.5 = 0.5 \][/tex]
Based on the comparisons, option [tex]\( \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \)[/tex] correctly represents the calculation used to determine the independence condition that fails in this given context.
Therefore, the correct answer is:
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \][/tex]
First, let’s define the probabilities:
1. [tex]\( P(A) \)[/tex] is the probability of rolling a number greater than 4. On a six-sided die, the possible outcomes greater than 4 are 5 and 6. Therefore:
[tex]\[ P(A) = \frac{2}{6} \][/tex]
2. [tex]\( P(B) \)[/tex] is the probability of rolling an even number. The even numbers on a six-sided die are 2, 4, and 6. Therefore:
[tex]\[ P(B) = \frac{3}{6} \][/tex]
3. [tex]\( P(A \cap B) \)[/tex] is the probability of both events happening (rolling a number that is both greater than 4 and even). The only number that fits this criterion is 6. Therefore:
[tex]\[ P(A \cap B) = \frac{1}{6} \][/tex]
For events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] to be independent, the following condition must hold:
[tex]\[ P(A \cap B) = P(A) \times P(B) \][/tex]
First, let’s compute [tex]\( P(A) \times P(B) \)[/tex]:
[tex]\[ P(A) \times P(B) = \frac{2}{6} \times \frac{3}{6} = \frac{6}{36} = \frac{1}{6} \][/tex]
Therefore, [tex]\( P(A \cap B) = P(A) \times P(B) \)[/tex] holds true.
Now, let’s double-check with the given question by examining each option for the necessary calculations:
1. [tex]\(\frac{\frac{2}{6}}{\frac{3}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3} \quad \text{and} \quad \frac{3}{6} = 0.5 \quad \Rightarrow \quad \frac{2}{3} \neq 0.5 \][/tex]
2. [tex]\(\frac{\frac{3}{6}}{\frac{1}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{1}{6}} = 3 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 3 \neq 0.333... \][/tex]
3. [tex]\(\frac{\frac{3}{6}}{\frac{2}{6}} \neq \frac{2}{6}\)[/tex]
[tex]\[ \frac{\frac{3}{6}}{\frac{2}{6}} = \frac{3}{2} = 1.5 \quad \text{and} \quad \frac{2}{6} = 0.333... \quad \Rightarrow \quad 1.5 \neq 0.333... \][/tex]
4. [tex]\(\frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6}\)[/tex]
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} = \frac{1}{2} = 0.5 \quad \text{and} \quad\frac{3}{6} = 0.5 \quad \Rightarrow \quad 0.5 = 0.5 \][/tex]
Based on the comparisons, option [tex]\( \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \)[/tex] correctly represents the calculation used to determine the independence condition that fails in this given context.
Therefore, the correct answer is:
[tex]\[ \frac{\frac{1}{6}}{\frac{2}{6}} \neq \frac{3}{6} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.