Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

A rectangular prism has dimensions [tex]x[/tex] units, [tex]2x[/tex] units, and [tex]x+8[/tex] units.

Which expression represents the surface area of the prism?

A. [tex]8x + 16[/tex] square units

B. [tex]16x + 32[/tex] square units

C. [tex]10x^2 + 48x[/tex] square units

D. [tex]2x^3 + 16x^2[/tex] square units


Sagot :

To determine the surface area of a rectangular prism with dimensions [tex]\( x \)[/tex], [tex]\( 2x \)[/tex], and [tex]\( x+8 \)[/tex], we need to use the formula for the surface area of a rectangular prism:

[tex]\[ \text{Surface Area} = 2(lw + lh + wh) \][/tex]

where:
- [tex]\( l \)[/tex] is the length,
- [tex]\( w \)[/tex] is the width,
- [tex]\( h \)[/tex] is the height.

Given:
- [tex]\( l = x \)[/tex],
- [tex]\( w = 2x \)[/tex],
- [tex]\( h = x + 8 \)[/tex].

First, calculate the areas of the three distinct pairs of faces:
1. Area of the face with dimensions [tex]\( l \)[/tex] and [tex]\( w \)[/tex]:
[tex]\[ lw = x \cdot 2x = 2x^2 \][/tex]
2. Area of the face with dimensions [tex]\( l \)[/tex] and [tex]\( h \)[/tex]:
[tex]\[ lh = x \cdot (x + 8) = x(x + 8) = x^2 + 8x \][/tex]
3. Area of the face with dimensions [tex]\( w \)[/tex] and [tex]\( h \)[/tex]:
[tex]\[ wh = 2x \cdot (x + 8) = 2x(x + 8) = 2x^2 + 16x \][/tex]

Next, add these areas together:
[tex]\[ lw + lh + wh = 2x^2 + (x^2 + 8x) + (2x^2 + 16x) \][/tex]

Combine like terms:
[tex]\[ 2x^2 + x^2 + 8x + 2x^2 + 16x = (2x^2 + x^2 + 2x^2) + (8x + 16x) \][/tex]
[tex]\[ = 5x^2 + 24x \][/tex]

Now, multiply by 2 to account for both sets of faces:
[tex]\[ \text{Surface Area} = 2(lw + lh + wh) = 2(5x^2 + 24x) \][/tex]
[tex]\[ = 10x^2 + 48x \][/tex]

Thus, the expression that represents the surface area of the rectangular prism is:
[tex]\[ 10x^2 + 48x \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{10x^2 + 48x} \][/tex] square units.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.