Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the relationship between events [tex]\( B \)[/tex] and [tex]\( C \)[/tex], we need to analyze the given probabilities: [tex]\( P(B) = 0.75 \)[/tex], [tex]\( P(B \text{ AND } C) = 0 \)[/tex], [tex]\( P(C) = 0.55 \)[/tex], and [tex]\( P(B \mid C) = 0 \)[/tex].
1. Checking if the events are Mutually Exclusive:
Events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive if they cannot occur simultaneously. This is mathematically represented as [tex]\( P(B \text{ AND } C) = 0 \)[/tex].
Given:
[tex]\[ P(B \text{ AND } C) = 0 \][/tex]
This condition is satisfied, meaning events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive.
2. Checking if the events are Independent:
Events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are independent if the occurrence of one event does not affect the probability of the other event occurring. This is defined by the condition:
[tex]\[ P(B \mid C) = P(B) \][/tex]
Given:
[tex]\[ P(B \mid C) = 0 \][/tex]
[tex]\[ P(B) = 0.75 \][/tex]
To check for independence, we compare [tex]\( P(B \mid C) \)[/tex] and [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid C) = 0 \][/tex]
[tex]\[ P(B) = 0.75 \][/tex]
Since [tex]\( P(B \mid C) \neq P(B) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Conclusion:
After careful consideration:
- The events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive.
- The events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
Based on these conditions, the correct answer is that events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are Mutually Exclusive.
1. Checking if the events are Mutually Exclusive:
Events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive if they cannot occur simultaneously. This is mathematically represented as [tex]\( P(B \text{ AND } C) = 0 \)[/tex].
Given:
[tex]\[ P(B \text{ AND } C) = 0 \][/tex]
This condition is satisfied, meaning events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive.
2. Checking if the events are Independent:
Events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are independent if the occurrence of one event does not affect the probability of the other event occurring. This is defined by the condition:
[tex]\[ P(B \mid C) = P(B) \][/tex]
Given:
[tex]\[ P(B \mid C) = 0 \][/tex]
[tex]\[ P(B) = 0.75 \][/tex]
To check for independence, we compare [tex]\( P(B \mid C) \)[/tex] and [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid C) = 0 \][/tex]
[tex]\[ P(B) = 0.75 \][/tex]
Since [tex]\( P(B \mid C) \neq P(B) \)[/tex], the events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
### Conclusion:
After careful consideration:
- The events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are mutually exclusive.
- The events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are not independent.
Based on these conditions, the correct answer is that events [tex]\( B \)[/tex] and [tex]\( C \)[/tex] are Mutually Exclusive.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.