Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find how many years it takes for the population of insects to double when growing at a constant rate, we need to iteratively apply the given growth factor until the population reaches twice its initial size.
Let's break this down step-by-step:
1. Given Values:
- The growth factor [tex]\( k \)[/tex] is 1.13.
- The initial population [tex]\( P_n \)[/tex] is 1 (for simplicity, we'll start with 1 unit).
- The target population is 2, which is double the initial population.
2. Initialize Variables:
- Start with the initial population, [tex]\( P_n = 1 \)[/tex].
- We need a counter for the number of years, starting at 0.
3. Growth Process:
- Each year, the population grows by multiplying the current population by the growth factor [tex]\( k = 1.13 \)[/tex].
- We keep track of how many years this process takes until the population reaches or exceeds the target.
Let's describe this process step-by-step:
1. Year 0:
- Population: [tex]\( P_0 = 1 \)[/tex]
- Target: 2
2. Year 1:
- New Population: [tex]\( P_1 = P_0 \times 1.13 = 1 \times 1.13 = 1.13 \)[/tex]
- Continue to next year as [tex]\( 1.13 < 2 \)[/tex]
3. Year 2:
- New Population: [tex]\( P_2 = P_1 \times 1.13 = 1.13 \times 1.13 \approx 1.2769 \)[/tex]
- Continue to next year as [tex]\( 1.2769 < 2 \)[/tex]
4. Year 3:
- New Population: [tex]\( P_3 = P_2 \times 1.13 = 1.2769 \times 1.13 \approx 1.4439 \)[/tex]
- Continue to next year as [tex]\( 1.4439 < 2 \)[/tex]
5. Year 4:
- New Population: [tex]\( P_4 = P_3 \times 1.13 = 1.4439 \times 1.13 \approx 1.6316 \)[/tex]
- Continue to next year as [tex]\( 1.6316 < 2 \)[/tex]
6. Year 5:
- New Population: [tex]\( P_5 = P_4 \times 1.13 = 1.6316 \times 1.13 \approx 1.8437 \)[/tex]
- Continue to next year as [tex]\( 1.8437 < 2 \)[/tex]
7. Year 6:
- New Population: [tex]\( P_6 = P_5 \times 1.13 = 1.8437 \times 1.13 \approx 2.081952 \)[/tex]
- Stop here, since [tex]\( 2.081952 \)[/tex] exceeds the target of 2.
It takes 6 years for the population to double from 1 to a value exceeding 2, precisely reaching approximately 2.081952.
Therefore, the population of insects will take 6 years to double.
Let's break this down step-by-step:
1. Given Values:
- The growth factor [tex]\( k \)[/tex] is 1.13.
- The initial population [tex]\( P_n \)[/tex] is 1 (for simplicity, we'll start with 1 unit).
- The target population is 2, which is double the initial population.
2. Initialize Variables:
- Start with the initial population, [tex]\( P_n = 1 \)[/tex].
- We need a counter for the number of years, starting at 0.
3. Growth Process:
- Each year, the population grows by multiplying the current population by the growth factor [tex]\( k = 1.13 \)[/tex].
- We keep track of how many years this process takes until the population reaches or exceeds the target.
Let's describe this process step-by-step:
1. Year 0:
- Population: [tex]\( P_0 = 1 \)[/tex]
- Target: 2
2. Year 1:
- New Population: [tex]\( P_1 = P_0 \times 1.13 = 1 \times 1.13 = 1.13 \)[/tex]
- Continue to next year as [tex]\( 1.13 < 2 \)[/tex]
3. Year 2:
- New Population: [tex]\( P_2 = P_1 \times 1.13 = 1.13 \times 1.13 \approx 1.2769 \)[/tex]
- Continue to next year as [tex]\( 1.2769 < 2 \)[/tex]
4. Year 3:
- New Population: [tex]\( P_3 = P_2 \times 1.13 = 1.2769 \times 1.13 \approx 1.4439 \)[/tex]
- Continue to next year as [tex]\( 1.4439 < 2 \)[/tex]
5. Year 4:
- New Population: [tex]\( P_4 = P_3 \times 1.13 = 1.4439 \times 1.13 \approx 1.6316 \)[/tex]
- Continue to next year as [tex]\( 1.6316 < 2 \)[/tex]
6. Year 5:
- New Population: [tex]\( P_5 = P_4 \times 1.13 = 1.6316 \times 1.13 \approx 1.8437 \)[/tex]
- Continue to next year as [tex]\( 1.8437 < 2 \)[/tex]
7. Year 6:
- New Population: [tex]\( P_6 = P_5 \times 1.13 = 1.8437 \times 1.13 \approx 2.081952 \)[/tex]
- Stop here, since [tex]\( 2.081952 \)[/tex] exceeds the target of 2.
It takes 6 years for the population to double from 1 to a value exceeding 2, precisely reaching approximately 2.081952.
Therefore, the population of insects will take 6 years to double.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.