Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find how many years it takes for the population of insects to double when growing at a constant rate, we need to iteratively apply the given growth factor until the population reaches twice its initial size.
Let's break this down step-by-step:
1. Given Values:
- The growth factor [tex]\( k \)[/tex] is 1.13.
- The initial population [tex]\( P_n \)[/tex] is 1 (for simplicity, we'll start with 1 unit).
- The target population is 2, which is double the initial population.
2. Initialize Variables:
- Start with the initial population, [tex]\( P_n = 1 \)[/tex].
- We need a counter for the number of years, starting at 0.
3. Growth Process:
- Each year, the population grows by multiplying the current population by the growth factor [tex]\( k = 1.13 \)[/tex].
- We keep track of how many years this process takes until the population reaches or exceeds the target.
Let's describe this process step-by-step:
1. Year 0:
- Population: [tex]\( P_0 = 1 \)[/tex]
- Target: 2
2. Year 1:
- New Population: [tex]\( P_1 = P_0 \times 1.13 = 1 \times 1.13 = 1.13 \)[/tex]
- Continue to next year as [tex]\( 1.13 < 2 \)[/tex]
3. Year 2:
- New Population: [tex]\( P_2 = P_1 \times 1.13 = 1.13 \times 1.13 \approx 1.2769 \)[/tex]
- Continue to next year as [tex]\( 1.2769 < 2 \)[/tex]
4. Year 3:
- New Population: [tex]\( P_3 = P_2 \times 1.13 = 1.2769 \times 1.13 \approx 1.4439 \)[/tex]
- Continue to next year as [tex]\( 1.4439 < 2 \)[/tex]
5. Year 4:
- New Population: [tex]\( P_4 = P_3 \times 1.13 = 1.4439 \times 1.13 \approx 1.6316 \)[/tex]
- Continue to next year as [tex]\( 1.6316 < 2 \)[/tex]
6. Year 5:
- New Population: [tex]\( P_5 = P_4 \times 1.13 = 1.6316 \times 1.13 \approx 1.8437 \)[/tex]
- Continue to next year as [tex]\( 1.8437 < 2 \)[/tex]
7. Year 6:
- New Population: [tex]\( P_6 = P_5 \times 1.13 = 1.8437 \times 1.13 \approx 2.081952 \)[/tex]
- Stop here, since [tex]\( 2.081952 \)[/tex] exceeds the target of 2.
It takes 6 years for the population to double from 1 to a value exceeding 2, precisely reaching approximately 2.081952.
Therefore, the population of insects will take 6 years to double.
Let's break this down step-by-step:
1. Given Values:
- The growth factor [tex]\( k \)[/tex] is 1.13.
- The initial population [tex]\( P_n \)[/tex] is 1 (for simplicity, we'll start with 1 unit).
- The target population is 2, which is double the initial population.
2. Initialize Variables:
- Start with the initial population, [tex]\( P_n = 1 \)[/tex].
- We need a counter for the number of years, starting at 0.
3. Growth Process:
- Each year, the population grows by multiplying the current population by the growth factor [tex]\( k = 1.13 \)[/tex].
- We keep track of how many years this process takes until the population reaches or exceeds the target.
Let's describe this process step-by-step:
1. Year 0:
- Population: [tex]\( P_0 = 1 \)[/tex]
- Target: 2
2. Year 1:
- New Population: [tex]\( P_1 = P_0 \times 1.13 = 1 \times 1.13 = 1.13 \)[/tex]
- Continue to next year as [tex]\( 1.13 < 2 \)[/tex]
3. Year 2:
- New Population: [tex]\( P_2 = P_1 \times 1.13 = 1.13 \times 1.13 \approx 1.2769 \)[/tex]
- Continue to next year as [tex]\( 1.2769 < 2 \)[/tex]
4. Year 3:
- New Population: [tex]\( P_3 = P_2 \times 1.13 = 1.2769 \times 1.13 \approx 1.4439 \)[/tex]
- Continue to next year as [tex]\( 1.4439 < 2 \)[/tex]
5. Year 4:
- New Population: [tex]\( P_4 = P_3 \times 1.13 = 1.4439 \times 1.13 \approx 1.6316 \)[/tex]
- Continue to next year as [tex]\( 1.6316 < 2 \)[/tex]
6. Year 5:
- New Population: [tex]\( P_5 = P_4 \times 1.13 = 1.6316 \times 1.13 \approx 1.8437 \)[/tex]
- Continue to next year as [tex]\( 1.8437 < 2 \)[/tex]
7. Year 6:
- New Population: [tex]\( P_6 = P_5 \times 1.13 = 1.8437 \times 1.13 \approx 2.081952 \)[/tex]
- Stop here, since [tex]\( 2.081952 \)[/tex] exceeds the target of 2.
It takes 6 years for the population to double from 1 to a value exceeding 2, precisely reaching approximately 2.081952.
Therefore, the population of insects will take 6 years to double.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.