Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the value of the charge given the electric potential and the distance, we use the formula for electric potential due to a point charge:
[tex]\[ V = \frac{k \cdot Q}{r} \][/tex]
where:
- [tex]\( V \)[/tex] is the electric potential (580 V),
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( k = \frac{1}{4 \pi \varepsilon_0} \)[/tex], with [tex]\( \varepsilon_0 \)[/tex] being the permittivity of free space ([tex]\( \varepsilon_0 = 8.854 \times 10^{-12} \, \text{F/m} \)[/tex]),
- [tex]\( Q \)[/tex] is the charge,
- [tex]\( r \)[/tex] is the distance from the charge (1.34 m).
First, solve for [tex]\( Q \)[/tex]:
[tex]\[ Q = V \cdot r \cdot 4 \pi \varepsilon_0 \][/tex]
Given the values:
[tex]\[ V = 580 \, \text{V} \][/tex]
[tex]\[ r = 1.34 \, \text{m} \][/tex]
[tex]\[ \varepsilon_0 = 8.854 \times 10^{-12} \, \text{F/m} \][/tex]
[tex]\[ Q = 580 \cdot 1.34 \cdot 4 \pi \cdot 8.854 \times 10^{-12} \][/tex]
Calculating the product of the constants, we get approximately:
[tex]\[ Q \approx 8.647332802006347 \times 10^{-8} \, \text{C} \][/tex]
So, the value of the charge is:
[tex]\[ \boxed{8.647332802006347} \times 10^{-8} \, \text{C} \][/tex]
Since the problem asks only for the number, the value is:
[tex]\[ \boxed{8.647332802006347} \][/tex]
However, for clarity and considering the simplified presentation for practical purposes, this is often rounded to:
[tex]\[ \boxed{8.647} \, \times 10^{-8} \, \text{C} \][/tex]
[tex]\[ V = \frac{k \cdot Q}{r} \][/tex]
where:
- [tex]\( V \)[/tex] is the electric potential (580 V),
- [tex]\( k \)[/tex] is Coulomb's constant, [tex]\( k = \frac{1}{4 \pi \varepsilon_0} \)[/tex], with [tex]\( \varepsilon_0 \)[/tex] being the permittivity of free space ([tex]\( \varepsilon_0 = 8.854 \times 10^{-12} \, \text{F/m} \)[/tex]),
- [tex]\( Q \)[/tex] is the charge,
- [tex]\( r \)[/tex] is the distance from the charge (1.34 m).
First, solve for [tex]\( Q \)[/tex]:
[tex]\[ Q = V \cdot r \cdot 4 \pi \varepsilon_0 \][/tex]
Given the values:
[tex]\[ V = 580 \, \text{V} \][/tex]
[tex]\[ r = 1.34 \, \text{m} \][/tex]
[tex]\[ \varepsilon_0 = 8.854 \times 10^{-12} \, \text{F/m} \][/tex]
[tex]\[ Q = 580 \cdot 1.34 \cdot 4 \pi \cdot 8.854 \times 10^{-12} \][/tex]
Calculating the product of the constants, we get approximately:
[tex]\[ Q \approx 8.647332802006347 \times 10^{-8} \, \text{C} \][/tex]
So, the value of the charge is:
[tex]\[ \boxed{8.647332802006347} \times 10^{-8} \, \text{C} \][/tex]
Since the problem asks only for the number, the value is:
[tex]\[ \boxed{8.647332802006347} \][/tex]
However, for clarity and considering the simplified presentation for practical purposes, this is often rounded to:
[tex]\[ \boxed{8.647} \, \times 10^{-8} \, \text{C} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.