Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine if the statement is true or false, let's consider the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] on a line.
The slope [tex]\(m\)[/tex] of a line through two points is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Now, let's examine the alternative way of labeling the points, which essentially reverses the order of the points:
[tex]\[ m = \frac{y_1 - y_2}{x_1 - x_2} \][/tex]
If we simplify this alternative slope formula:
[tex]\[ m = \frac{-(y_2 - y_1)}{-(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
As you can see, reversing the order of the points essentially cancels out the negative signs both in the numerator and the denominator, leaving us with the original slope calculation:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Thus, regardless of the order in which we label the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], the slope calculation ultimately yields the same result.
Therefore, the statement:
"It doesn't matter which of the two points on a line you choose to call [tex]\((x_1, y_1)\)[/tex] and which you choose to call [tex]\((x_2, y_2)\)[/tex] to calculate the slope of the line"
is:
A. True
The slope [tex]\(m\)[/tex] of a line through two points is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Now, let's examine the alternative way of labeling the points, which essentially reverses the order of the points:
[tex]\[ m = \frac{y_1 - y_2}{x_1 - x_2} \][/tex]
If we simplify this alternative slope formula:
[tex]\[ m = \frac{-(y_2 - y_1)}{-(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
As you can see, reversing the order of the points essentially cancels out the negative signs both in the numerator and the denominator, leaving us with the original slope calculation:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Thus, regardless of the order in which we label the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], the slope calculation ultimately yields the same result.
Therefore, the statement:
"It doesn't matter which of the two points on a line you choose to call [tex]\((x_1, y_1)\)[/tex] and which you choose to call [tex]\((x_2, y_2)\)[/tex] to calculate the slope of the line"
is:
A. True
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.