Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given the sets [tex]\( A = \{2, 3, 6, 7\} \)[/tex] and [tex]\( B = \{1, 2, 3, 6, 7, 8\} \)[/tex], we need to determine the intersection and union of these sets.
### Intersection ([tex]\(A \cap B\)[/tex]):
The intersection of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
The common elements are [tex]\( 2, 3, 6, \)[/tex] and [tex]\( 7 \)[/tex].
Thus, the intersection [tex]\(A \cap B = \{2, 3, 6, 7\}\)[/tex].
### Union ([tex]\(A \cup B\)[/tex]):
The union of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
Combining the elements from both sets (and removing duplicates) gives us: [tex]\( 1, 2, 3, 6, 7, \)[/tex] and [tex]\( 8 \)[/tex].
Thus, the union [tex]\(A \cup B = \{1, 2, 3, 6, 7, 8\}\)[/tex].
### Answer:
[tex]\[ \begin{array}{l} A = \{2, 3, 6, 7\} \\ B = \{1, 2, 3, 6, 7, 8\} \\ A \cap B = \{2, 3, 6, 7\} \\ A \cup B = \{1, 2, 3, 6, 7, 8\} \end{array} \][/tex]
### Intersection ([tex]\(A \cap B\)[/tex]):
The intersection of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
The common elements are [tex]\( 2, 3, 6, \)[/tex] and [tex]\( 7 \)[/tex].
Thus, the intersection [tex]\(A \cap B = \{2, 3, 6, 7\}\)[/tex].
### Union ([tex]\(A \cup B\)[/tex]):
The union of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
Combining the elements from both sets (and removing duplicates) gives us: [tex]\( 1, 2, 3, 6, 7, \)[/tex] and [tex]\( 8 \)[/tex].
Thus, the union [tex]\(A \cup B = \{1, 2, 3, 6, 7, 8\}\)[/tex].
### Answer:
[tex]\[ \begin{array}{l} A = \{2, 3, 6, 7\} \\ B = \{1, 2, 3, 6, 7, 8\} \\ A \cap B = \{2, 3, 6, 7\} \\ A \cup B = \{1, 2, 3, 6, 7, 8\} \end{array} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.