Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's start by defining the required sets.
1. The universal set [tex]\( U \)[/tex]:
[tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
2. Define set [tex]\( A \)[/tex] as:
[tex]\[ A = \{x \in U \mid x < 5 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are less than 5:
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
3. Define set [tex]\( B \)[/tex] as:
[tex]\[ B = \{x \in U \mid x > 3 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are greater than 3:
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Next, we need to find the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cap B \)[/tex]. The intersection of two sets is the set of elements that are common to both sets.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
The common element between [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{4\} \][/tex]
Now, we need to find the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cup B \)[/tex]. The union of two sets is the set of all elements that are in either set.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Combining all elements from both sets without repeating any element, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
Therefore, the final answers are:
[tex]\[ \begin{array}{l} A \cap B = \{4\} \\ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \end{array} \][/tex]
1. The universal set [tex]\( U \)[/tex]:
[tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
2. Define set [tex]\( A \)[/tex] as:
[tex]\[ A = \{x \in U \mid x < 5 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are less than 5:
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
3. Define set [tex]\( B \)[/tex] as:
[tex]\[ B = \{x \in U \mid x > 3 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are greater than 3:
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Next, we need to find the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cap B \)[/tex]. The intersection of two sets is the set of elements that are common to both sets.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
The common element between [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{4\} \][/tex]
Now, we need to find the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cup B \)[/tex]. The union of two sets is the set of all elements that are in either set.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Combining all elements from both sets without repeating any element, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
Therefore, the final answers are:
[tex]\[ \begin{array}{l} A \cap B = \{4\} \\ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \end{array} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.