Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's start by defining the required sets.
1. The universal set [tex]\( U \)[/tex]:
[tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
2. Define set [tex]\( A \)[/tex] as:
[tex]\[ A = \{x \in U \mid x < 5 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are less than 5:
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
3. Define set [tex]\( B \)[/tex] as:
[tex]\[ B = \{x \in U \mid x > 3 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are greater than 3:
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Next, we need to find the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cap B \)[/tex]. The intersection of two sets is the set of elements that are common to both sets.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
The common element between [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{4\} \][/tex]
Now, we need to find the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cup B \)[/tex]. The union of two sets is the set of all elements that are in either set.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Combining all elements from both sets without repeating any element, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
Therefore, the final answers are:
[tex]\[ \begin{array}{l} A \cap B = \{4\} \\ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \end{array} \][/tex]
1. The universal set [tex]\( U \)[/tex]:
[tex]\[ U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
2. Define set [tex]\( A \)[/tex] as:
[tex]\[ A = \{x \in U \mid x < 5 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are less than 5:
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
3. Define set [tex]\( B \)[/tex] as:
[tex]\[ B = \{x \in U \mid x > 3 \} \][/tex]
This set includes all elements of [tex]\( U \)[/tex] that are greater than 3:
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Next, we need to find the intersection of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cap B \)[/tex]. The intersection of two sets is the set of elements that are common to both sets.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
The common element between [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is:
[tex]\[ A \cap B = \{4\} \][/tex]
Now, we need to find the union of [tex]\( A \)[/tex] and [tex]\( B \)[/tex], denoted as [tex]\( A \cup B \)[/tex]. The union of two sets is the set of all elements that are in either set.
[tex]\[ A = \{1, 2, 3, 4\} \][/tex]
[tex]\[ B = \{4, 5, 6, 7, 8, 9, 10\} \][/tex]
Combining all elements from both sets without repeating any element, we get:
[tex]\[ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \][/tex]
Therefore, the final answers are:
[tex]\[ \begin{array}{l} A \cap B = \{4\} \\ A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \end{array} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.