At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Two students stand 1 yard apart and measure their respective angles of elevation to the top of a tree.

Student A measures the angle to be [tex]$57^{\circ}$[/tex], and Student B measures the angle to be [tex]$46^{\circ}$[/tex].

Using the Law of Sines: [tex]$\frac{\sin (A)}{a}=\frac{\sin (B)}{b}=\frac{\sin (C)}{c}$[/tex]

What is [tex]$h$[/tex], the height of the tree? Use the law of sines to first find AT. Then use that measure to find the value of [tex]$h$[/tex].

A. 3.0 yards
B. 3.2 yards
C. 3.8 yards
D. 4.4 yards


Sagot :

Alright, let's walk through the solution step-by-step to find the height of the tree, [tex]\( h \)[/tex].

1. Determine the given angles:
- Angle [tex]\(A\)[/tex]: [tex]\(57^\circ\)[/tex]
- Angle [tex]\(B\)[/tex]: [tex]\(46^\circ\)[/tex]

2. Calculate the third angle [tex]\(C\)[/tex] in the triangle formed by the students and the tree:
[tex]\[ C = 180^\circ - A - B = 180^\circ - 57^\circ - 46^\circ = 77^\circ \][/tex]

3. Apply the Law of Sines to find the length [tex]\(AT\)[/tex]:
The law of sines states:
[tex]\[ \frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} \][/tex]
Here, [tex]\(a = 1\)[/tex] yard (the distance between the students),
[tex]\[ \frac{\sin(57^\circ)}{AT} = \frac{\sin(46^\circ)}{1 \text{ yard}} = \frac{\sin(77^\circ)}{c} \][/tex]

To find [tex]\(AT\)[/tex], we rearrange the formula to solve for [tex]\(AT\)[/tex]:
[tex]\[ AT = \frac{\sin(A)}{\sin(C)} \times 1 \text{ yard} \][/tex]

4. Calculate the sine values and then [tex]\(AT\)[/tex]:
[tex]\[ \sin(57^\circ) \approx 0.8387 \][/tex]
[tex]\[ \sin(77^\circ) \approx 0.9744 \][/tex]
[tex]\[ AT = \frac{\sin(57^\circ)}{\sin(77^\circ)} \approx \frac{0.8387}{0.9744} \approx 0.8607 \text{ yards} \][/tex]

5. Determine the height of the tree [tex]\(h\)[/tex] using [tex]\(AT\)[/tex] and angle [tex]\(A\)[/tex]:
In triangle [tex]\( ATO \)[/tex] (where [tex]\(O\)[/tex] is the top of the tree),
[tex]\[ h = AT \times \sin(A) \][/tex]
[tex]\[ h = 0.8607 \text{ yards} \times \sin(57^\circ) \approx 0.8607 \times 0.8387 \approx 0.7219 \text{ yards} \][/tex]

So, based on the given calculations, the height of the tree [tex]\( h \)[/tex] is approximately [tex]\(0.7219\)[/tex] yards. Note that the listed choices (3.0 yards, 3.2 yards, 3.8 yards, 4.4 yards) seem significantly higher than our calculation. Therefore, it appears that there may be an error, or additional context is needed to match the expected values. However, based on the provided steps, [tex]\( h \approx 0.7219\)[/tex] yards is the height of the tree.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.