Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of the line that is perpendicular to the line [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex], we need to follow these steps:
1. Determine the slope of the given line:
The given line is [tex]\(y = \frac{3}{5}x + 10\)[/tex]. The coefficient of [tex]\(x\)[/tex] is the slope of the line. So, the slope [tex]\(m\)[/tex] of the given line is:
[tex]\[ m = \frac{3}{5} \][/tex]
2. Find the slope of the perpendicular line:
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. If [tex]\(m_1\)[/tex] is the slope of the first line, then the slope [tex]\(m_2\)[/tex] of the line perpendicular to it can be found using:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
Here, [tex]\(m_1 = \frac{3}{5}\)[/tex], so:
[tex]\[ m_2 = -\frac{1}{\frac{3}{5}} = -\frac{5}{3} \][/tex]
So, the slope of the perpendicular line is [tex]\(-\frac{5}{3}\)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We have:
[tex]\[ (x_1, y_1) = (15, -5) \][/tex]
and the perpendicular slope [tex]\(m = -\frac{5}{3}\)[/tex]. Plugging these values in, we get:
[tex]\[ y - (-5) = -\frac{5}{3}(x - 15) \][/tex]
Simplifying, this becomes:
[tex]\[ y + 5 = -\frac{5}{3}(x - 15) \][/tex]
4. Simplify the equation to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
Distribute [tex]\(-\frac{5}{3}\)[/tex] on the right-hand side:
[tex]\[ y + 5 = -\frac{5}{3}x + 25 \][/tex]
Subtract 5 from both sides:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex] is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
From the given options, the correct answer is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
1. Determine the slope of the given line:
The given line is [tex]\(y = \frac{3}{5}x + 10\)[/tex]. The coefficient of [tex]\(x\)[/tex] is the slope of the line. So, the slope [tex]\(m\)[/tex] of the given line is:
[tex]\[ m = \frac{3}{5} \][/tex]
2. Find the slope of the perpendicular line:
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. If [tex]\(m_1\)[/tex] is the slope of the first line, then the slope [tex]\(m_2\)[/tex] of the line perpendicular to it can be found using:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
Here, [tex]\(m_1 = \frac{3}{5}\)[/tex], so:
[tex]\[ m_2 = -\frac{1}{\frac{3}{5}} = -\frac{5}{3} \][/tex]
So, the slope of the perpendicular line is [tex]\(-\frac{5}{3}\)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We have:
[tex]\[ (x_1, y_1) = (15, -5) \][/tex]
and the perpendicular slope [tex]\(m = -\frac{5}{3}\)[/tex]. Plugging these values in, we get:
[tex]\[ y - (-5) = -\frac{5}{3}(x - 15) \][/tex]
Simplifying, this becomes:
[tex]\[ y + 5 = -\frac{5}{3}(x - 15) \][/tex]
4. Simplify the equation to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
Distribute [tex]\(-\frac{5}{3}\)[/tex] on the right-hand side:
[tex]\[ y + 5 = -\frac{5}{3}x + 25 \][/tex]
Subtract 5 from both sides:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex] is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
From the given options, the correct answer is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.