Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the equation of the line that is perpendicular to the line [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex], we need to follow these steps:
1. Determine the slope of the given line:
The given line is [tex]\(y = \frac{3}{5}x + 10\)[/tex]. The coefficient of [tex]\(x\)[/tex] is the slope of the line. So, the slope [tex]\(m\)[/tex] of the given line is:
[tex]\[ m = \frac{3}{5} \][/tex]
2. Find the slope of the perpendicular line:
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. If [tex]\(m_1\)[/tex] is the slope of the first line, then the slope [tex]\(m_2\)[/tex] of the line perpendicular to it can be found using:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
Here, [tex]\(m_1 = \frac{3}{5}\)[/tex], so:
[tex]\[ m_2 = -\frac{1}{\frac{3}{5}} = -\frac{5}{3} \][/tex]
So, the slope of the perpendicular line is [tex]\(-\frac{5}{3}\)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We have:
[tex]\[ (x_1, y_1) = (15, -5) \][/tex]
and the perpendicular slope [tex]\(m = -\frac{5}{3}\)[/tex]. Plugging these values in, we get:
[tex]\[ y - (-5) = -\frac{5}{3}(x - 15) \][/tex]
Simplifying, this becomes:
[tex]\[ y + 5 = -\frac{5}{3}(x - 15) \][/tex]
4. Simplify the equation to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
Distribute [tex]\(-\frac{5}{3}\)[/tex] on the right-hand side:
[tex]\[ y + 5 = -\frac{5}{3}x + 25 \][/tex]
Subtract 5 from both sides:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex] is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
From the given options, the correct answer is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
1. Determine the slope of the given line:
The given line is [tex]\(y = \frac{3}{5}x + 10\)[/tex]. The coefficient of [tex]\(x\)[/tex] is the slope of the line. So, the slope [tex]\(m\)[/tex] of the given line is:
[tex]\[ m = \frac{3}{5} \][/tex]
2. Find the slope of the perpendicular line:
For two lines to be perpendicular, the product of their slopes must be [tex]\(-1\)[/tex]. If [tex]\(m_1\)[/tex] is the slope of the first line, then the slope [tex]\(m_2\)[/tex] of the line perpendicular to it can be found using:
[tex]\[ m_2 = -\frac{1}{m_1} \][/tex]
Here, [tex]\(m_1 = \frac{3}{5}\)[/tex], so:
[tex]\[ m_2 = -\frac{1}{\frac{3}{5}} = -\frac{5}{3} \][/tex]
So, the slope of the perpendicular line is [tex]\(-\frac{5}{3}\)[/tex].
3. Use the point-slope form of the line equation:
The point-slope form of a line's equation is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
We have:
[tex]\[ (x_1, y_1) = (15, -5) \][/tex]
and the perpendicular slope [tex]\(m = -\frac{5}{3}\)[/tex]. Plugging these values in, we get:
[tex]\[ y - (-5) = -\frac{5}{3}(x - 15) \][/tex]
Simplifying, this becomes:
[tex]\[ y + 5 = -\frac{5}{3}(x - 15) \][/tex]
4. Simplify the equation to the slope-intercept form [tex]\(y = mx + b\)[/tex]:
Distribute [tex]\(-\frac{5}{3}\)[/tex] on the right-hand side:
[tex]\[ y + 5 = -\frac{5}{3}x + 25 \][/tex]
Subtract 5 from both sides:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
Therefore, the equation of the line that is perpendicular to [tex]\(y = \frac{3}{5}x + 10\)[/tex] and passes through the point [tex]\((15, -5)\)[/tex] is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
From the given options, the correct answer is:
[tex]\[ y = -\frac{5}{3}x + 20 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.