At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the sum of the two given expressions, we need to follow these steps in the correct order:
1. Factor the denominators of each fraction:
[tex]\[ \frac{3(x+2)}{(x+2)(x-3)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
2. Simplify the first fraction by canceling the common factor in the numerator and the denominator:
[tex]\[ \frac{3}{(x-3)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
3. Rewrite the first fraction with the common denominator (x - 3)(x + 4):
[tex]\[ \frac{3(x+4)}{(x-3)(x+4)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
4. Combine the numerators over the common denominator:
[tex]\[ \frac{(3(x+4) + 2 x)}{(x-3)(x+4)} \][/tex]
The correct order of steps is:
- [tex]\(\frac{3(x+2)}{(x+2)(x-3)}+\frac{2 x}{(x-3)(x+4)} \)[/tex]
- [tex]\(\frac{3}{(x-3)}+\frac{2 x}{(x-3)(x+4)}\)[/tex]
- [tex]\(\frac{3(x+4)}{(x-3)(x+4)}+\frac{2 x}{(x-3)(x+4)}\)[/tex]
- [tex]\(\frac{(3(x+4)+2x)}{(x-3)(x+4)}\)[/tex]
These steps lead us to the required result.
1. Factor the denominators of each fraction:
[tex]\[ \frac{3(x+2)}{(x+2)(x-3)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
2. Simplify the first fraction by canceling the common factor in the numerator and the denominator:
[tex]\[ \frac{3}{(x-3)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
3. Rewrite the first fraction with the common denominator (x - 3)(x + 4):
[tex]\[ \frac{3(x+4)}{(x-3)(x+4)}+\frac{2 x}{(x-3)(x+4)} \][/tex]
4. Combine the numerators over the common denominator:
[tex]\[ \frac{(3(x+4) + 2 x)}{(x-3)(x+4)} \][/tex]
The correct order of steps is:
- [tex]\(\frac{3(x+2)}{(x+2)(x-3)}+\frac{2 x}{(x-3)(x+4)} \)[/tex]
- [tex]\(\frac{3}{(x-3)}+\frac{2 x}{(x-3)(x+4)}\)[/tex]
- [tex]\(\frac{3(x+4)}{(x-3)(x+4)}+\frac{2 x}{(x-3)(x+4)}\)[/tex]
- [tex]\(\frac{(3(x+4)+2x)}{(x-3)(x+4)}\)[/tex]
These steps lead us to the required result.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.