Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the final balanced equation for the redox reaction, we need to follow these steps:
### Given Half-Reactions:
1. Oxidation half-reaction:
[tex]\[ 2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 e^- \][/tex]
2. Reduction half-reaction:
[tex]\[ \text{Cr}^{3+} + 3 e^- \rightarrow \text{Cr} \][/tex]
### Step-by-Step Solution:
#### Step 1: Balance the electrons in both half-reactions
- The first half-reaction (oxidation) involves [tex]\(2 e^-\)[/tex].
- The second half-reaction (reduction) involves [tex]\(3 e^-\)[/tex].
To combine these half-reactions, the number of electrons lost in the oxidation half-reaction must equal the number of electrons gained in the reduction half-reaction. Find the least common multiple (LCM) of 2 and 3 to achieve this:
- The LCM of 2 and 3 is 6.
Therefore, we need to balance the half-reactions by multiplying them by appropriate factors to get 6 electrons in each half-reaction.
#### Step 2: Multiply each half-reaction by appropriate factors
- Multiply the oxidation half-reaction by 3:
[tex]\[ 3 \times (2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 e^-) = 6 \text{Cl}^- \rightarrow 3 \text{Cl}_2 + 6 e^- \][/tex]
- Multiply the reduction half-reaction by 2:
[tex]\[ 2 \times (\text{Cr}^{3+} + 3 e^- \rightarrow \text{Cr}) = 2 \text{Cr}^{3+} + 6 e^- \rightarrow 2 \text{Cr} \][/tex]
#### Step 3: Add the balanced half-reactions together
Now add the two half-reactions ensuring the electrons cancel each other out:
[tex]\[ 6 \text{Cl}^- \rightarrow 3 \text{Cl}_2 + 6 e^- \][/tex]
[tex]\[ 2 \text{Cr}^{3+} + 6 e^- \rightarrow 2 \text{Cr} \][/tex]
Combine the equations:
[tex]\[ 2 \text{Cr}^{3+} + 6 \text{Cl}^- \rightarrow 2 \text{Cr} + 3 \text{Cl}_2 \][/tex]
### Step 4: Write the final balanced equation
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
In conclusion, the final balanced equation for the redox reaction is:
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
Thus, the correct choice is:
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
### Given Half-Reactions:
1. Oxidation half-reaction:
[tex]\[ 2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 e^- \][/tex]
2. Reduction half-reaction:
[tex]\[ \text{Cr}^{3+} + 3 e^- \rightarrow \text{Cr} \][/tex]
### Step-by-Step Solution:
#### Step 1: Balance the electrons in both half-reactions
- The first half-reaction (oxidation) involves [tex]\(2 e^-\)[/tex].
- The second half-reaction (reduction) involves [tex]\(3 e^-\)[/tex].
To combine these half-reactions, the number of electrons lost in the oxidation half-reaction must equal the number of electrons gained in the reduction half-reaction. Find the least common multiple (LCM) of 2 and 3 to achieve this:
- The LCM of 2 and 3 is 6.
Therefore, we need to balance the half-reactions by multiplying them by appropriate factors to get 6 electrons in each half-reaction.
#### Step 2: Multiply each half-reaction by appropriate factors
- Multiply the oxidation half-reaction by 3:
[tex]\[ 3 \times (2 \text{Cl}^- \rightarrow \text{Cl}_2 + 2 e^-) = 6 \text{Cl}^- \rightarrow 3 \text{Cl}_2 + 6 e^- \][/tex]
- Multiply the reduction half-reaction by 2:
[tex]\[ 2 \times (\text{Cr}^{3+} + 3 e^- \rightarrow \text{Cr}) = 2 \text{Cr}^{3+} + 6 e^- \rightarrow 2 \text{Cr} \][/tex]
#### Step 3: Add the balanced half-reactions together
Now add the two half-reactions ensuring the electrons cancel each other out:
[tex]\[ 6 \text{Cl}^- \rightarrow 3 \text{Cl}_2 + 6 e^- \][/tex]
[tex]\[ 2 \text{Cr}^{3+} + 6 e^- \rightarrow 2 \text{Cr} \][/tex]
Combine the equations:
[tex]\[ 2 \text{Cr}^{3+} + 6 \text{Cl}^- \rightarrow 2 \text{Cr} + 3 \text{Cl}_2 \][/tex]
### Step 4: Write the final balanced equation
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
In conclusion, the final balanced equation for the redox reaction is:
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
Thus, the correct choice is:
[tex]\[ 2 \text{Cr}^{3+}(aq) + 6 \text{Cl}^-(aq) \rightarrow 2 \text{Cr}(s) + 3 \text{Cl}_2(g) \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.