Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine if the exponential function [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is increasing or decreasing over its entire domain, let's go through a step-by-step analysis.
1. Understanding the function: An exponential function of the form [tex]\( f(x) = a^x \)[/tex] involves a constant base [tex]\( a \)[/tex] raised to a variable exponent [tex]\( x \)[/tex]. Here, we are given that [tex]\( a > 1 \)[/tex].
2. Behavior for different values of [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is a positive number, say [tex]\( x = 2 \)[/tex], then [tex]\( a^x = a^2 \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\( a^2 \)[/tex] will be larger than [tex]\( a \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is larger as [tex]\( x \)[/tex] increases when [tex]\( x \)[/tex] is positive.
- If [tex]\( x \)[/tex] is zero, [tex]\( a^0 = 1 \)[/tex] because any number raised to the power of zero is 1.
- If [tex]\( x \)[/tex] is a negative number, say [tex]\( x = -1 \)[/tex], then [tex]\( a^x = a^{-1} = \frac{1}{a} \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\(\frac{1}{a} \)[/tex] will be less than 1. As [tex]\( x \)[/tex] becomes more negative, [tex]\( a^x \)[/tex] will continue to decrease but will always be positive and approaching zero.
3. Overall trend:
- When [tex]\( x \)[/tex] increases (i.e., becomes more positive), [tex]\( f(x) \)[/tex] increases because the base [tex]\( a \)[/tex] is being raised to larger and larger powers.
- When [tex]\( x \)[/tex] decreases (i.e., becomes more negative), [tex]\( f(x) \)[/tex] also decreases but remains positive.
4. Observation from the derivative:
- The derivative of [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is [tex]\( f'(x) = a^x \ln(a) \)[/tex].
- Since [tex]\( a > 1 \)[/tex], [tex]\( \ln(a) \)[/tex] (the natural logarithm of [tex]\( a \)[/tex]) is positive.
- Therefore, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex].
Since the derivative [tex]\( f'(x) \)[/tex] is positive for the entire domain of [tex]\( x \)[/tex], it indicates that [tex]\( f(x) = a^x \)[/tex] is an increasing function for all values of [tex]\( x \)[/tex].
Therefore, the correct answer is:
B. increasing
1. Understanding the function: An exponential function of the form [tex]\( f(x) = a^x \)[/tex] involves a constant base [tex]\( a \)[/tex] raised to a variable exponent [tex]\( x \)[/tex]. Here, we are given that [tex]\( a > 1 \)[/tex].
2. Behavior for different values of [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is a positive number, say [tex]\( x = 2 \)[/tex], then [tex]\( a^x = a^2 \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\( a^2 \)[/tex] will be larger than [tex]\( a \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is larger as [tex]\( x \)[/tex] increases when [tex]\( x \)[/tex] is positive.
- If [tex]\( x \)[/tex] is zero, [tex]\( a^0 = 1 \)[/tex] because any number raised to the power of zero is 1.
- If [tex]\( x \)[/tex] is a negative number, say [tex]\( x = -1 \)[/tex], then [tex]\( a^x = a^{-1} = \frac{1}{a} \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\(\frac{1}{a} \)[/tex] will be less than 1. As [tex]\( x \)[/tex] becomes more negative, [tex]\( a^x \)[/tex] will continue to decrease but will always be positive and approaching zero.
3. Overall trend:
- When [tex]\( x \)[/tex] increases (i.e., becomes more positive), [tex]\( f(x) \)[/tex] increases because the base [tex]\( a \)[/tex] is being raised to larger and larger powers.
- When [tex]\( x \)[/tex] decreases (i.e., becomes more negative), [tex]\( f(x) \)[/tex] also decreases but remains positive.
4. Observation from the derivative:
- The derivative of [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is [tex]\( f'(x) = a^x \ln(a) \)[/tex].
- Since [tex]\( a > 1 \)[/tex], [tex]\( \ln(a) \)[/tex] (the natural logarithm of [tex]\( a \)[/tex]) is positive.
- Therefore, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex].
Since the derivative [tex]\( f'(x) \)[/tex] is positive for the entire domain of [tex]\( x \)[/tex], it indicates that [tex]\( f(x) = a^x \)[/tex] is an increasing function for all values of [tex]\( x \)[/tex].
Therefore, the correct answer is:
B. increasing
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.