Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine if the exponential function [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is increasing or decreasing over its entire domain, let's go through a step-by-step analysis.
1. Understanding the function: An exponential function of the form [tex]\( f(x) = a^x \)[/tex] involves a constant base [tex]\( a \)[/tex] raised to a variable exponent [tex]\( x \)[/tex]. Here, we are given that [tex]\( a > 1 \)[/tex].
2. Behavior for different values of [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is a positive number, say [tex]\( x = 2 \)[/tex], then [tex]\( a^x = a^2 \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\( a^2 \)[/tex] will be larger than [tex]\( a \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is larger as [tex]\( x \)[/tex] increases when [tex]\( x \)[/tex] is positive.
- If [tex]\( x \)[/tex] is zero, [tex]\( a^0 = 1 \)[/tex] because any number raised to the power of zero is 1.
- If [tex]\( x \)[/tex] is a negative number, say [tex]\( x = -1 \)[/tex], then [tex]\( a^x = a^{-1} = \frac{1}{a} \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\(\frac{1}{a} \)[/tex] will be less than 1. As [tex]\( x \)[/tex] becomes more negative, [tex]\( a^x \)[/tex] will continue to decrease but will always be positive and approaching zero.
3. Overall trend:
- When [tex]\( x \)[/tex] increases (i.e., becomes more positive), [tex]\( f(x) \)[/tex] increases because the base [tex]\( a \)[/tex] is being raised to larger and larger powers.
- When [tex]\( x \)[/tex] decreases (i.e., becomes more negative), [tex]\( f(x) \)[/tex] also decreases but remains positive.
4. Observation from the derivative:
- The derivative of [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is [tex]\( f'(x) = a^x \ln(a) \)[/tex].
- Since [tex]\( a > 1 \)[/tex], [tex]\( \ln(a) \)[/tex] (the natural logarithm of [tex]\( a \)[/tex]) is positive.
- Therefore, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex].
Since the derivative [tex]\( f'(x) \)[/tex] is positive for the entire domain of [tex]\( x \)[/tex], it indicates that [tex]\( f(x) = a^x \)[/tex] is an increasing function for all values of [tex]\( x \)[/tex].
Therefore, the correct answer is:
B. increasing
1. Understanding the function: An exponential function of the form [tex]\( f(x) = a^x \)[/tex] involves a constant base [tex]\( a \)[/tex] raised to a variable exponent [tex]\( x \)[/tex]. Here, we are given that [tex]\( a > 1 \)[/tex].
2. Behavior for different values of [tex]\( x \)[/tex]:
- If [tex]\( x \)[/tex] is a positive number, say [tex]\( x = 2 \)[/tex], then [tex]\( a^x = a^2 \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\( a^2 \)[/tex] will be larger than [tex]\( a \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is larger as [tex]\( x \)[/tex] increases when [tex]\( x \)[/tex] is positive.
- If [tex]\( x \)[/tex] is zero, [tex]\( a^0 = 1 \)[/tex] because any number raised to the power of zero is 1.
- If [tex]\( x \)[/tex] is a negative number, say [tex]\( x = -1 \)[/tex], then [tex]\( a^x = a^{-1} = \frac{1}{a} \)[/tex]. Since [tex]\( a > 1 \)[/tex], [tex]\(\frac{1}{a} \)[/tex] will be less than 1. As [tex]\( x \)[/tex] becomes more negative, [tex]\( a^x \)[/tex] will continue to decrease but will always be positive and approaching zero.
3. Overall trend:
- When [tex]\( x \)[/tex] increases (i.e., becomes more positive), [tex]\( f(x) \)[/tex] increases because the base [tex]\( a \)[/tex] is being raised to larger and larger powers.
- When [tex]\( x \)[/tex] decreases (i.e., becomes more negative), [tex]\( f(x) \)[/tex] also decreases but remains positive.
4. Observation from the derivative:
- The derivative of [tex]\( f(x) = a^x \)[/tex], where [tex]\( a > 1 \)[/tex], is [tex]\( f'(x) = a^x \ln(a) \)[/tex].
- Since [tex]\( a > 1 \)[/tex], [tex]\( \ln(a) \)[/tex] (the natural logarithm of [tex]\( a \)[/tex]) is positive.
- Therefore, [tex]\( f'(x) \)[/tex] is positive for all [tex]\( x \)[/tex].
Since the derivative [tex]\( f'(x) \)[/tex] is positive for the entire domain of [tex]\( x \)[/tex], it indicates that [tex]\( f(x) = a^x \)[/tex] is an increasing function for all values of [tex]\( x \)[/tex].
Therefore, the correct answer is:
B. increasing
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.