Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find [tex]\(\log _8 0.87\)[/tex] using the change-of-base theorem, follow these steps:
1. Understand the Change-of-Base Formula:
The change-of-base formula for logarithms states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(b \neq 1\)[/tex] and [tex]\(c \neq 1\)[/tex]):
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
This formula allows us to change the base of the logarithm to something more convenient, typically base 10 (common logarithms) or base [tex]\(e\)[/tex] (natural logarithms).
2. Apply the Change-of-Base Formula:
We need to find [tex]\(\log_8(0.87)\)[/tex]. Using base 10 for convenience, we apply the change-of-base formula:
[tex]\[ \log_8(0.87) = \frac{\log_{10}(0.87)}{\log_{10}(8)} \][/tex]
3. Calculate [tex]\(\log_{10}(0.87)\)[/tex] and [tex]\(\log_{10}(8)\)[/tex]:
- [tex]\(\log_{10}(0.87) \approx -0.06069784035361199\)[/tex]
- [tex]\(\log_{10}(8) \approx 0.9030899869919435\)[/tex]
4. Divide the Logarithms:
[tex]\[ \log_8(0.87) = \frac{-0.06069784035361199}{0.9030899869919435} \approx -0.067 \][/tex]
5. Simplify and Round the Answer:
The exact value of [tex]\(\log_8(0.87)\)[/tex] is approximately [tex]\(-0.06697089797533214\)[/tex]. When rounding to four decimal places, the result is:
[tex]\[ \log_8(0.87) \approx -0.0670 \][/tex]
Thus, the simplified and rounded value of [tex]\(\log_8(0.87)\)[/tex] is:
[tex]\[ \log_8(0.87) = -0.0670 \][/tex]
1. Understand the Change-of-Base Formula:
The change-of-base formula for logarithms states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(b \neq 1\)[/tex] and [tex]\(c \neq 1\)[/tex]):
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
This formula allows us to change the base of the logarithm to something more convenient, typically base 10 (common logarithms) or base [tex]\(e\)[/tex] (natural logarithms).
2. Apply the Change-of-Base Formula:
We need to find [tex]\(\log_8(0.87)\)[/tex]. Using base 10 for convenience, we apply the change-of-base formula:
[tex]\[ \log_8(0.87) = \frac{\log_{10}(0.87)}{\log_{10}(8)} \][/tex]
3. Calculate [tex]\(\log_{10}(0.87)\)[/tex] and [tex]\(\log_{10}(8)\)[/tex]:
- [tex]\(\log_{10}(0.87) \approx -0.06069784035361199\)[/tex]
- [tex]\(\log_{10}(8) \approx 0.9030899869919435\)[/tex]
4. Divide the Logarithms:
[tex]\[ \log_8(0.87) = \frac{-0.06069784035361199}{0.9030899869919435} \approx -0.067 \][/tex]
5. Simplify and Round the Answer:
The exact value of [tex]\(\log_8(0.87)\)[/tex] is approximately [tex]\(-0.06697089797533214\)[/tex]. When rounding to four decimal places, the result is:
[tex]\[ \log_8(0.87) \approx -0.0670 \][/tex]
Thus, the simplified and rounded value of [tex]\(\log_8(0.87)\)[/tex] is:
[tex]\[ \log_8(0.87) = -0.0670 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.