Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Use the change-of-base theorem to find the logarithm.

[tex]\[ \log_{8} 0.87 \][/tex]

[tex]\[ \log_{8} 0.87 = \square \][/tex]

(Simplify your answer. Do not round until the final answer. Then round to four decimal places as needed.)


Sagot :

To find [tex]\(\log _8 0.87\)[/tex] using the change-of-base theorem, follow these steps:

1. Understand the Change-of-Base Formula:
The change-of-base formula for logarithms states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(b \neq 1\)[/tex] and [tex]\(c \neq 1\)[/tex]):
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
This formula allows us to change the base of the logarithm to something more convenient, typically base 10 (common logarithms) or base [tex]\(e\)[/tex] (natural logarithms).

2. Apply the Change-of-Base Formula:
We need to find [tex]\(\log_8(0.87)\)[/tex]. Using base 10 for convenience, we apply the change-of-base formula:
[tex]\[ \log_8(0.87) = \frac{\log_{10}(0.87)}{\log_{10}(8)} \][/tex]

3. Calculate [tex]\(\log_{10}(0.87)\)[/tex] and [tex]\(\log_{10}(8)\)[/tex]:
- [tex]\(\log_{10}(0.87) \approx -0.06069784035361199\)[/tex]
- [tex]\(\log_{10}(8) \approx 0.9030899869919435\)[/tex]

4. Divide the Logarithms:
[tex]\[ \log_8(0.87) = \frac{-0.06069784035361199}{0.9030899869919435} \approx -0.067 \][/tex]

5. Simplify and Round the Answer:
The exact value of [tex]\(\log_8(0.87)\)[/tex] is approximately [tex]\(-0.06697089797533214\)[/tex]. When rounding to four decimal places, the result is:
[tex]\[ \log_8(0.87) \approx -0.0670 \][/tex]

Thus, the simplified and rounded value of [tex]\(\log_8(0.87)\)[/tex] is:
[tex]\[ \log_8(0.87) = -0.0670 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.