Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Use the change-of-base theorem to find the logarithm.

[tex]\[
\log_{1/6} 8
\][/tex]

Use the change-of-base theorem to rewrite the given expression in terms of natural logarithms or common logarithms.

[tex]\[
\log_{1/6} 8 = \square
\][/tex]

(Do not evaluate. Do not simplify.)

Sagot :

To find the logarithm [tex]\(\log_{1/6} 8\)[/tex] using the change-of-base theorem, we can rewrite the expression in terms of natural logarithms.

The change-of-base theorem states that:
[tex]\[ \log_b a = \frac{\log_k a}{\log_k b} \][/tex]
where [tex]\( b \)[/tex] is the base, [tex]\( a \)[/tex] is the value, and [tex]\( k \)[/tex] is the new base for the logarithm (commonly [tex]\( k \)[/tex] is chosen to be either 10 for common logarithms or [tex]\( e \)[/tex] for natural logarithms).

In this problem, we need to find [tex]\(\log_{1/6} 8\)[/tex]. Using the natural logarithm (base [tex]\( e \)[/tex]), the expression can be rewritten as:
[tex]\[ \log_{1/6} 8 = \frac{\ln 8}{\ln (1/6)} \][/tex]

So, the logarithm [tex]\(\log_{1/6} 8\)[/tex] in terms of natural logarithms is:
[tex]\[ \log_{1/6} 8 = \frac{\ln 8}{\ln (1/6)} \][/tex]

This is the expression provided in terms of natural logarithms without evaluating or simplifying.