Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the inverse function [tex]\( f^{-1}(x) \)[/tex] for the given function [tex]\( f(x) = 16^x \)[/tex], you need to reverse the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation. Here are the steps to find the inverse function:
1. Rewrite the Function:
Start with the given function [tex]\( f(x) = 16^x \)[/tex]. For the purpose of finding the inverse, let's rewrite it using [tex]\( y \)[/tex]:
[tex]\[ y = 16^x \][/tex]
2. Express [tex]\( x \)[/tex] in Terms of [tex]\( y \)[/tex]:
The goal is to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]. Start by taking the logarithm of both sides of the equation. In this case, we will take the logarithm to the base 16:
[tex]\[ \log_{16}(y) = \log_{16}(16^x) \][/tex]
Using the logarithmic property [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we get:
[tex]\[ \log_{16}(y) = x \cdot \log_{16}(16) \][/tex]
Since [tex]\( \log_{16}(16) = 1 \)[/tex] (because any number to the power of itself is 1 in logarithms):
[tex]\[ \log_{16}(y) = x \][/tex]
Therefore:
[tex]\[ x = \log_{16}(y) \][/tex]
3. Convert the Logarithmic Base:
To express the answer in a more conventional way, we can convert the base of the logarithm to a natural logarithm (base [tex]\( e \)[/tex]) or common logarithm (base [tex]\( 10 \)[/tex]). One of the properties of logarithms allows us to do so:
[tex]\[ \log_{16}(y) = \frac{\log(y)}{\log(16)} \][/tex]
or using the natural logarithm:
[tex]\[ \log_{16}(y) = \frac{\ln(y)}{\ln(16)} \][/tex]
4. Write the Inverse Function:
Now, express [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{\log(x)}{\log(16)} \][/tex]
or using the natural logarithm:
[tex]\[ f^{-1}(x) = \frac{\ln(x)}{\ln(16)} \][/tex]
Thus, the inverse function of [tex]\( f(x) = 16^x \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{\log(x)}{\log(16)} \][/tex]
1. Rewrite the Function:
Start with the given function [tex]\( f(x) = 16^x \)[/tex]. For the purpose of finding the inverse, let's rewrite it using [tex]\( y \)[/tex]:
[tex]\[ y = 16^x \][/tex]
2. Express [tex]\( x \)[/tex] in Terms of [tex]\( y \)[/tex]:
The goal is to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]. Start by taking the logarithm of both sides of the equation. In this case, we will take the logarithm to the base 16:
[tex]\[ \log_{16}(y) = \log_{16}(16^x) \][/tex]
Using the logarithmic property [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we get:
[tex]\[ \log_{16}(y) = x \cdot \log_{16}(16) \][/tex]
Since [tex]\( \log_{16}(16) = 1 \)[/tex] (because any number to the power of itself is 1 in logarithms):
[tex]\[ \log_{16}(y) = x \][/tex]
Therefore:
[tex]\[ x = \log_{16}(y) \][/tex]
3. Convert the Logarithmic Base:
To express the answer in a more conventional way, we can convert the base of the logarithm to a natural logarithm (base [tex]\( e \)[/tex]) or common logarithm (base [tex]\( 10 \)[/tex]). One of the properties of logarithms allows us to do so:
[tex]\[ \log_{16}(y) = \frac{\log(y)}{\log(16)} \][/tex]
or using the natural logarithm:
[tex]\[ \log_{16}(y) = \frac{\ln(y)}{\ln(16)} \][/tex]
4. Write the Inverse Function:
Now, express [tex]\( f^{-1}(x) \)[/tex]:
[tex]\[ f^{-1}(x) = \frac{\log(x)}{\log(16)} \][/tex]
or using the natural logarithm:
[tex]\[ f^{-1}(x) = \frac{\ln(x)}{\ln(16)} \][/tex]
Thus, the inverse function of [tex]\( f(x) = 16^x \)[/tex] is:
[tex]\[ f^{-1}(x) = \frac{\log(x)}{\log(16)} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.