Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the approximations of the common logarithms, we will proceed step-by-step for each given value. The common logarithm [tex]\(\log(x)\)[/tex] is the logarithm to the base 10.
### (a) [tex]\(\log(758.4)\)[/tex]
First, we need to calculate the common logarithm of [tex]\(758.4\)[/tex].
[tex]\[ \log(758.4) \approx 2.8799 \][/tex]
So, the approximate value for [tex]\(\log(758.4)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{2.8799} \][/tex]
### (b) [tex]\(\log(75.84)\)[/tex]
Next, we calculate the common logarithm of [tex]\(75.84\)[/tex].
[tex]\[ \log(75.84) \approx 1.8799 \][/tex]
So, the approximate value for [tex]\(\log(75.84)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{1.8799} \][/tex]
### (c) [tex]\(\log(7.584)\)[/tex]
Finally, we calculate the common logarithm of [tex]\(7.584\)[/tex].
[tex]\[ \log(7.584) \approx 0.8799 \][/tex]
So, the approximate value for [tex]\(\log(7.584)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{0.8799} \][/tex]
To summarize:
- [tex]\(\log(758.4) \approx 2.8799\)[/tex]
- [tex]\(\log(75.84) \approx 1.8799\)[/tex]
- [tex]\(\log(7.584) \approx 0.8799\)[/tex]
### (a) [tex]\(\log(758.4)\)[/tex]
First, we need to calculate the common logarithm of [tex]\(758.4\)[/tex].
[tex]\[ \log(758.4) \approx 2.8799 \][/tex]
So, the approximate value for [tex]\(\log(758.4)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{2.8799} \][/tex]
### (b) [tex]\(\log(75.84)\)[/tex]
Next, we calculate the common logarithm of [tex]\(75.84\)[/tex].
[tex]\[ \log(75.84) \approx 1.8799 \][/tex]
So, the approximate value for [tex]\(\log(75.84)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{1.8799} \][/tex]
### (c) [tex]\(\log(7.584)\)[/tex]
Finally, we calculate the common logarithm of [tex]\(7.584\)[/tex].
[tex]\[ \log(7.584) \approx 0.8799 \][/tex]
So, the approximate value for [tex]\(\log(7.584)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{0.8799} \][/tex]
To summarize:
- [tex]\(\log(758.4) \approx 2.8799\)[/tex]
- [tex]\(\log(75.84) \approx 1.8799\)[/tex]
- [tex]\(\log(7.584) \approx 0.8799\)[/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.