Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the approximations of the common logarithms, we will proceed step-by-step for each given value. The common logarithm [tex]\(\log(x)\)[/tex] is the logarithm to the base 10.
### (a) [tex]\(\log(758.4)\)[/tex]
First, we need to calculate the common logarithm of [tex]\(758.4\)[/tex].
[tex]\[ \log(758.4) \approx 2.8799 \][/tex]
So, the approximate value for [tex]\(\log(758.4)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{2.8799} \][/tex]
### (b) [tex]\(\log(75.84)\)[/tex]
Next, we calculate the common logarithm of [tex]\(75.84\)[/tex].
[tex]\[ \log(75.84) \approx 1.8799 \][/tex]
So, the approximate value for [tex]\(\log(75.84)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{1.8799} \][/tex]
### (c) [tex]\(\log(7.584)\)[/tex]
Finally, we calculate the common logarithm of [tex]\(7.584\)[/tex].
[tex]\[ \log(7.584) \approx 0.8799 \][/tex]
So, the approximate value for [tex]\(\log(7.584)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{0.8799} \][/tex]
To summarize:
- [tex]\(\log(758.4) \approx 2.8799\)[/tex]
- [tex]\(\log(75.84) \approx 1.8799\)[/tex]
- [tex]\(\log(7.584) \approx 0.8799\)[/tex]
### (a) [tex]\(\log(758.4)\)[/tex]
First, we need to calculate the common logarithm of [tex]\(758.4\)[/tex].
[tex]\[ \log(758.4) \approx 2.8799 \][/tex]
So, the approximate value for [tex]\(\log(758.4)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{2.8799} \][/tex]
### (b) [tex]\(\log(75.84)\)[/tex]
Next, we calculate the common logarithm of [tex]\(75.84\)[/tex].
[tex]\[ \log(75.84) \approx 1.8799 \][/tex]
So, the approximate value for [tex]\(\log(75.84)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{1.8799} \][/tex]
### (c) [tex]\(\log(7.584)\)[/tex]
Finally, we calculate the common logarithm of [tex]\(7.584\)[/tex].
[tex]\[ \log(7.584) \approx 0.8799 \][/tex]
So, the approximate value for [tex]\(\log(7.584)\)[/tex] rounded to four decimal places is:
[tex]\[ \boxed{0.8799} \][/tex]
To summarize:
- [tex]\(\log(758.4) \approx 2.8799\)[/tex]
- [tex]\(\log(75.84) \approx 1.8799\)[/tex]
- [tex]\(\log(7.584) \approx 0.8799\)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.