At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's find [tex]\(\log_4(5)\)[/tex] using the change-of-base theorem.
The change-of-base theorem states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] where [tex]\( b \neq 1 \)[/tex] and [tex]\( c \neq 1 \)[/tex]:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
In this problem, we're looking to find [tex]\(\log_4(5)\)[/tex]. We can choose any base [tex]\(c\)[/tex] for our logarithms, but it’s common to use the base 10 (common logarithm) or base [tex]\(e\)[/tex] (natural logarithm). Here, we'll use base 10.
Applying the change-of-base theorem:
[tex]\[ \log_4(5) = \frac{\log_{10}(5)}{\log_{10}(4)} \][/tex]
Now, we need to find the values of [tex]\(\log_{10}(5)\)[/tex] and [tex]\(\log_{10}(4)\)[/tex].
By calculation:
[tex]\[ \log_{10}(5) \approx 0.6989700043360187 \][/tex]
[tex]\[ \log_{10}(4) \approx 0.6020599913279623 \][/tex]
So, substituting these values into the formula:
[tex]\[ \log_4(5) = \frac{0.6989700043360187}{0.6020599913279623} \approx 1.1609640474436813 \][/tex]
Therefore, [tex]\(\log_4(5) \approx 1.1609640474436813\)[/tex].
The change-of-base theorem states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] where [tex]\( b \neq 1 \)[/tex] and [tex]\( c \neq 1 \)[/tex]:
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
In this problem, we're looking to find [tex]\(\log_4(5)\)[/tex]. We can choose any base [tex]\(c\)[/tex] for our logarithms, but it’s common to use the base 10 (common logarithm) or base [tex]\(e\)[/tex] (natural logarithm). Here, we'll use base 10.
Applying the change-of-base theorem:
[tex]\[ \log_4(5) = \frac{\log_{10}(5)}{\log_{10}(4)} \][/tex]
Now, we need to find the values of [tex]\(\log_{10}(5)\)[/tex] and [tex]\(\log_{10}(4)\)[/tex].
By calculation:
[tex]\[ \log_{10}(5) \approx 0.6989700043360187 \][/tex]
[tex]\[ \log_{10}(4) \approx 0.6020599913279623 \][/tex]
So, substituting these values into the formula:
[tex]\[ \log_4(5) = \frac{0.6989700043360187}{0.6020599913279623} \approx 1.1609640474436813 \][/tex]
Therefore, [tex]\(\log_4(5) \approx 1.1609640474436813\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.