Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given sets of side lengths form triangles that are similar to the triangle with side lengths 7, 24, and 25, we need to check two criteria:
1. They must form a Pythagorean triple.
2. The triangles must be similar, meaning the side lengths of the given sets must be proportional to 7, 24, and 25.
### Step-by-Step Solution
#### Given Triangle
The original triangle has side lengths:
- [tex]\( a = 7 \)[/tex]
- [tex]\( b = 24 \)[/tex]
- [tex]\( c = 25 \)[/tex]
It forms a Pythagorean triple, as [tex]\(7^2 + 24^2 = 25^2\)[/tex].
#### Checking Each Set
1. Set: [tex]\( 14, 48, 50 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 14^2 + 48^2 = 196 + 2304 = 2500 = 50^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{14}{7} = 2 \)[/tex], [tex]\( \frac{48}{24} = 2 \)[/tex], [tex]\( \frac{50}{25} = 2 \)[/tex]
- This set meets both criteria and is similar to the original triangle.
2. Set: [tex]\( 9, 12, 15 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 9^2 + 12^2 = 81 + 144 = 225 = 15^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{9}{7} \neq \frac{12}{24} \)[/tex], hence not the same ratio for all sides.
- This set does not meet the similarity criteria.
3. Set: [tex]\( 2, \sqrt{20}, 2\sqrt{6} \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 2^2 + (\sqrt{20})^2 = 4 + 20 = 24 \neq (2\sqrt{6})^2 = 24 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
4. Set: [tex]\( 8, 15, 17 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 8^2 + 15^2 = 64 + 225 = 289 = 17^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{8}{7}, \frac{15}{24}, \frac{17}{25} \)[/tex] are not in the same ratio.
- This set does not meet the similarity criteria.
5. Set: [tex]\( \sqrt{7}, \sqrt{24}, \sqrt{25} \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( (\sqrt{7})^2 + (\sqrt{24})^2 = 7 + 24 = 31 \neq (\sqrt{25})^2 = 25 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
6. Set: [tex]\( 35, 120, 125 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 35^2 + 120^2 = 1225 + 14400 = 15625 = 125^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{35}{7} = 5, \frac{120}{24} = 5, \frac{125}{25} = 5 \)[/tex]
- This set meets both criteria and is similar to the original triangle.
7. Set: [tex]\( 21, 72, 78 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 21^2 + 72^2 = 441 + 5184 = 5625 \neq 78^2 = 6084 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
### Conclusion
The sets that form side lengths of triangles similar to a triangle with side lengths 7, 24, and 25 are:
- [tex]\( 14, 48, 50 \)[/tex]
- [tex]\( 35, 120, 125 \)[/tex]
Therefore, the correct options are:
[tex]\[ \boxed{14,48,50} \][/tex]
[tex]\[ \boxed{35,120,125} \][/tex]
1. They must form a Pythagorean triple.
2. The triangles must be similar, meaning the side lengths of the given sets must be proportional to 7, 24, and 25.
### Step-by-Step Solution
#### Given Triangle
The original triangle has side lengths:
- [tex]\( a = 7 \)[/tex]
- [tex]\( b = 24 \)[/tex]
- [tex]\( c = 25 \)[/tex]
It forms a Pythagorean triple, as [tex]\(7^2 + 24^2 = 25^2\)[/tex].
#### Checking Each Set
1. Set: [tex]\( 14, 48, 50 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 14^2 + 48^2 = 196 + 2304 = 2500 = 50^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{14}{7} = 2 \)[/tex], [tex]\( \frac{48}{24} = 2 \)[/tex], [tex]\( \frac{50}{25} = 2 \)[/tex]
- This set meets both criteria and is similar to the original triangle.
2. Set: [tex]\( 9, 12, 15 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 9^2 + 12^2 = 81 + 144 = 225 = 15^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{9}{7} \neq \frac{12}{24} \)[/tex], hence not the same ratio for all sides.
- This set does not meet the similarity criteria.
3. Set: [tex]\( 2, \sqrt{20}, 2\sqrt{6} \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 2^2 + (\sqrt{20})^2 = 4 + 20 = 24 \neq (2\sqrt{6})^2 = 24 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
4. Set: [tex]\( 8, 15, 17 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 8^2 + 15^2 = 64 + 225 = 289 = 17^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{8}{7}, \frac{15}{24}, \frac{17}{25} \)[/tex] are not in the same ratio.
- This set does not meet the similarity criteria.
5. Set: [tex]\( \sqrt{7}, \sqrt{24}, \sqrt{25} \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( (\sqrt{7})^2 + (\sqrt{24})^2 = 7 + 24 = 31 \neq (\sqrt{25})^2 = 25 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
6. Set: [tex]\( 35, 120, 125 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 35^2 + 120^2 = 1225 + 14400 = 15625 = 125^2 \)[/tex]
- Proportional to the original triangle: [tex]\( \frac{35}{7} = 5, \frac{120}{24} = 5, \frac{125}{25} = 5 \)[/tex]
- This set meets both criteria and is similar to the original triangle.
7. Set: [tex]\( 21, 72, 78 \)[/tex]
- Check if it forms a Pythagorean triple: [tex]\( 21^2 + 72^2 = 441 + 5184 = 5625 \neq 78^2 = 6084 \)[/tex]
- The sides are not even forming a Pythagorean triple.
- This set does not meet the criteria.
### Conclusion
The sets that form side lengths of triangles similar to a triangle with side lengths 7, 24, and 25 are:
- [tex]\( 14, 48, 50 \)[/tex]
- [tex]\( 35, 120, 125 \)[/tex]
Therefore, the correct options are:
[tex]\[ \boxed{14,48,50} \][/tex]
[tex]\[ \boxed{35,120,125} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.