Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Rewrite the polynomial function in a clear format and correct any grammatical or spelling errors.

Polynomial function of degree three:
[tex]\[ y = x^3 - 5x^2 + 2x + 8 \][/tex]


Sagot :

To determine the degree and coefficients of the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex], we need to carefully analyze the polynomial step by step.

Step 1: Identify the degree of the polynomial.

The degree of a polynomial is the highest power of the variable (in this case, `x` or `y`) that appears in the expression with a non-zero coefficient.

In the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The term [tex]\( y^3 \)[/tex] has the variable [tex]\( y \)[/tex] raised to the power of 3.
- The term [tex]\( -5x^2 \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 2.
- The term [tex]\( 2x \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 1.
- The constant term [tex]\( 8 \)[/tex] does not contain any variable, which can be considered as the variable raised to the power of 0.

Here, the term [tex]\( y^3 \)[/tex] indicates that the polynomial has a degree of 3, since 3 is the highest power among the terms.

Step 2: Identify the coefficients of the polynomial.

The coefficients of a polynomial are the numerical factors of each term. For each term, we look at the number multiplying the variable.

For [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The coefficient of [tex]\( y^3 \)[/tex] is 1 (since it can be written as [tex]\( 1 \cdot y^3 \)[/tex]).
- The coefficient of [tex]\( x^2 \)[/tex] is -5 (since it is [tex]\( -5 \cdot x^2 \)[/tex]).
- The coefficient of [tex]\( x \)[/tex] is 2 (since it is [tex]\( 2 \cdot x \)[/tex]).
- The constant term is 8, which can be viewed as [tex]\( 8 \cdot x^0 \)[/tex].

Therefore, the coefficients (considering polynomials in terms of [tex]\( x \)[/tex]) are [tex]\([1, -5, 2, 8]\)[/tex].

Conclusion:

The degree of the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex] is 3, and the coefficients are [tex]\([1, -5, 2, 8]\)[/tex].

Thus, the final answer is:
[tex]\[ (3, [1, -5, 2, 8]) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.