Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the degree and coefficients of the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex], we need to carefully analyze the polynomial step by step.
Step 1: Identify the degree of the polynomial.
The degree of a polynomial is the highest power of the variable (in this case, `x` or `y`) that appears in the expression with a non-zero coefficient.
In the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The term [tex]\( y^3 \)[/tex] has the variable [tex]\( y \)[/tex] raised to the power of 3.
- The term [tex]\( -5x^2 \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 2.
- The term [tex]\( 2x \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 1.
- The constant term [tex]\( 8 \)[/tex] does not contain any variable, which can be considered as the variable raised to the power of 0.
Here, the term [tex]\( y^3 \)[/tex] indicates that the polynomial has a degree of 3, since 3 is the highest power among the terms.
Step 2: Identify the coefficients of the polynomial.
The coefficients of a polynomial are the numerical factors of each term. For each term, we look at the number multiplying the variable.
For [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The coefficient of [tex]\( y^3 \)[/tex] is 1 (since it can be written as [tex]\( 1 \cdot y^3 \)[/tex]).
- The coefficient of [tex]\( x^2 \)[/tex] is -5 (since it is [tex]\( -5 \cdot x^2 \)[/tex]).
- The coefficient of [tex]\( x \)[/tex] is 2 (since it is [tex]\( 2 \cdot x \)[/tex]).
- The constant term is 8, which can be viewed as [tex]\( 8 \cdot x^0 \)[/tex].
Therefore, the coefficients (considering polynomials in terms of [tex]\( x \)[/tex]) are [tex]\([1, -5, 2, 8]\)[/tex].
Conclusion:
The degree of the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex] is 3, and the coefficients are [tex]\([1, -5, 2, 8]\)[/tex].
Thus, the final answer is:
[tex]\[ (3, [1, -5, 2, 8]) \][/tex]
Step 1: Identify the degree of the polynomial.
The degree of a polynomial is the highest power of the variable (in this case, `x` or `y`) that appears in the expression with a non-zero coefficient.
In the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The term [tex]\( y^3 \)[/tex] has the variable [tex]\( y \)[/tex] raised to the power of 3.
- The term [tex]\( -5x^2 \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 2.
- The term [tex]\( 2x \)[/tex] has the variable [tex]\( x \)[/tex] raised to the power of 1.
- The constant term [tex]\( 8 \)[/tex] does not contain any variable, which can be considered as the variable raised to the power of 0.
Here, the term [tex]\( y^3 \)[/tex] indicates that the polynomial has a degree of 3, since 3 is the highest power among the terms.
Step 2: Identify the coefficients of the polynomial.
The coefficients of a polynomial are the numerical factors of each term. For each term, we look at the number multiplying the variable.
For [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex]:
- The coefficient of [tex]\( y^3 \)[/tex] is 1 (since it can be written as [tex]\( 1 \cdot y^3 \)[/tex]).
- The coefficient of [tex]\( x^2 \)[/tex] is -5 (since it is [tex]\( -5 \cdot x^2 \)[/tex]).
- The coefficient of [tex]\( x \)[/tex] is 2 (since it is [tex]\( 2 \cdot x \)[/tex]).
- The constant term is 8, which can be viewed as [tex]\( 8 \cdot x^0 \)[/tex].
Therefore, the coefficients (considering polynomials in terms of [tex]\( x \)[/tex]) are [tex]\([1, -5, 2, 8]\)[/tex].
Conclusion:
The degree of the polynomial [tex]\( y^3 - 5x^2 + 2x + 8 \)[/tex] is 3, and the coefficients are [tex]\([1, -5, 2, 8]\)[/tex].
Thus, the final answer is:
[tex]\[ (3, [1, -5, 2, 8]) \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.