Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the empirical formula of a molecule with given percentages of its constituent elements, we need to follow a series of steps that include converting mass percentages to moles and then finding the simplest whole number ratio of the elements. Here's the detailed process:
1. Convert mass percentages to moles:
- The atomic mass of Carbon (C) is approximately 12.01 g/mol.
- The atomic mass of Hydrogen (H) is approximately 1.008 g/mol.
- The atomic mass of Chlorine (Cl) is approximately 35.45 g/mol.
Using the mass percentage as a direct mass in grams (since we assume 100 grams of the compound for simplicity):
- Moles of Carbon, [tex]\(C\)[/tex]:
[tex]\[ \text{moles of } C = \frac{24 \text{ grams}}{12.01 \text{ g/mol}} = 1.998 \approx 2 \][/tex]
- Moles of Hydrogen, [tex]\(H\)[/tex]:
[tex]\[ \text{moles of } H = \frac{6 \text{ grams}}{1.008 \text{ g/mol}} = 5.952 \approx 6 \][/tex]
- Moles of Chlorine, [tex]\(Cl\)[/tex]:
[tex]\[ \text{moles of } Cl = \frac{70 \text{ grams}}{35.45 \text{ g/mol}} = 1.975 \approx 2 \][/tex]
2. Determine the simplest whole number mole ratio:
- Calculate and simplify the mole ratios by dividing each by the smallest number of moles calculated:
- Smallest number of moles here is approximately 2.
[tex]\[ \text{Ratio of } C: \frac{1.998}{1.998} = 1 \][/tex]
[tex]\[ \text{Ratio of } H: \frac{5.952}{1.998} \approx 3 \][/tex]
[tex]\[ \text{Ratio of } Cl: \frac{1.975}{1.998} \approx 1 \][/tex]
3. Write the empirical formula based on the simplest ratio:
- From the mole ratios, we determine the formula to be [tex]\(CH_3Cl\)[/tex].
Our answer is:
[tex]\[ \boxed{CH_3Cl} \][/tex]
Thus, the empirical formula of the molecule is given by option:
[tex]\[ \text{B. } CH_3Cl \][/tex]
1. Convert mass percentages to moles:
- The atomic mass of Carbon (C) is approximately 12.01 g/mol.
- The atomic mass of Hydrogen (H) is approximately 1.008 g/mol.
- The atomic mass of Chlorine (Cl) is approximately 35.45 g/mol.
Using the mass percentage as a direct mass in grams (since we assume 100 grams of the compound for simplicity):
- Moles of Carbon, [tex]\(C\)[/tex]:
[tex]\[ \text{moles of } C = \frac{24 \text{ grams}}{12.01 \text{ g/mol}} = 1.998 \approx 2 \][/tex]
- Moles of Hydrogen, [tex]\(H\)[/tex]:
[tex]\[ \text{moles of } H = \frac{6 \text{ grams}}{1.008 \text{ g/mol}} = 5.952 \approx 6 \][/tex]
- Moles of Chlorine, [tex]\(Cl\)[/tex]:
[tex]\[ \text{moles of } Cl = \frac{70 \text{ grams}}{35.45 \text{ g/mol}} = 1.975 \approx 2 \][/tex]
2. Determine the simplest whole number mole ratio:
- Calculate and simplify the mole ratios by dividing each by the smallest number of moles calculated:
- Smallest number of moles here is approximately 2.
[tex]\[ \text{Ratio of } C: \frac{1.998}{1.998} = 1 \][/tex]
[tex]\[ \text{Ratio of } H: \frac{5.952}{1.998} \approx 3 \][/tex]
[tex]\[ \text{Ratio of } Cl: \frac{1.975}{1.998} \approx 1 \][/tex]
3. Write the empirical formula based on the simplest ratio:
- From the mole ratios, we determine the formula to be [tex]\(CH_3Cl\)[/tex].
Our answer is:
[tex]\[ \boxed{CH_3Cl} \][/tex]
Thus, the empirical formula of the molecule is given by option:
[tex]\[ \text{B. } CH_3Cl \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.