Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Select the correct answer.

The distance versus time plot for a particular object shows a quadratic relationship. Which column of distance data is possible for this situation?

\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (s) & A. Distance (m) & B. Distance (m) & C. Distance (m) & D. Distance (m) & E. Distance (m) \\
\hline 0 & 0 & 2.00 & 9.00 & ㅁ⼠ & वᄆ士 \\
\hline 1 & 1.00 & 4.00 & 18.00 & 1.00 & 1.00 \\
\hline 2 & 4.00 & 6.00 & 27.00 & 0.50 & 0.25 \\
\hline 3 & 9.00 & 8.00 & 36.00 & 0.33 & 0.11 \\
\hline 4 & 16.00 & 10.00 & 45.00 & 0.25 & 0.06 \\
\hline 5 & 25.00 & 12.00 & 54.00 & 0.20 & 0.04 \\
\hline 6 & 36.00 & 14.00 & 63.00 & 0.16 & 0.02 \\
\hline
\end{tabular}

A. Column A
B. Column B
C. Column C

Sagot :

To determine which column of distance data represents a quadratic relationship, let's analyze the given data:

1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.

2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].

3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.

4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.

Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].

Thus, the correct answer is:
A. Column A