Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Select the correct answer.

The distance versus time plot for a particular object shows a quadratic relationship. Which column of distance data is possible for this situation?

\begin{tabular}{|c|c|c|c|c|c|}
\hline Time (s) & A. Distance (m) & B. Distance (m) & C. Distance (m) & D. Distance (m) & E. Distance (m) \\
\hline 0 & 0 & 2.00 & 9.00 & ㅁ⼠ & वᄆ士 \\
\hline 1 & 1.00 & 4.00 & 18.00 & 1.00 & 1.00 \\
\hline 2 & 4.00 & 6.00 & 27.00 & 0.50 & 0.25 \\
\hline 3 & 9.00 & 8.00 & 36.00 & 0.33 & 0.11 \\
\hline 4 & 16.00 & 10.00 & 45.00 & 0.25 & 0.06 \\
\hline 5 & 25.00 & 12.00 & 54.00 & 0.20 & 0.04 \\
\hline 6 & 36.00 & 14.00 & 63.00 & 0.16 & 0.02 \\
\hline
\end{tabular}

A. Column A
B. Column B
C. Column C

Sagot :

To determine which column of distance data represents a quadratic relationship, let's analyze the given data:

1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.

2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].

3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.

4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.

Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].

Thus, the correct answer is:
A. Column A