Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which column of distance data represents a quadratic relationship, let's analyze the given data:
1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.
2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].
3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.
4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.
Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].
Thus, the correct answer is:
A. Column A
1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.
2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].
3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.
4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.
Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].
Thus, the correct answer is:
A. Column A
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.