Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which column of distance data represents a quadratic relationship, let's analyze the given data:
1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.
2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].
3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.
4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.
Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].
Thus, the correct answer is:
A. Column A
1. Understanding a Quadratic Relationship:
- A quadratic relationship means that the distance [tex]\( d \)[/tex] is proportional to the square of time [tex]\( t \)[/tex].
- Mathematically, this can be expressed as [tex]\( d = k \cdot t^2 \)[/tex], where [tex]\( k \)[/tex] is a constant.
2. Analyzing Column A:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{A. Distance (m)} \\ \hline 0 & 0 \\ \hline 1 & 1 \\ \hline 2 & 4 \\ \hline 3 & 9 \\ \hline 4 & 16 \\ \hline 5 & 25 \\ \hline 6 & 36 \\ \hline \end{tabular} \][/tex]
- Let's check if this follows [tex]\( d = k \cdot t^2 \)[/tex]:
[tex]\[ \begin{align*} t = 0 & , \quad d = 0 = 0^2 \\ t = 1 & , \quad d = 1 = 1^2 \\ t = 2 & , \quad d = 4 = 2^2 \\ t = 3 & , \quad d = 9 = 3^2 \\ t = 4 & , \quad d = 16 = 4^2 \\ t = 5 & , \quad d = 25 = 5^2 \\ t = 6 & , \quad d = 36 = 6^2 \\ \end{align*} \][/tex]
- Clearly, distance [tex]\( d \)[/tex] is following a quadratic relationship [tex]\( d = t^2 \)[/tex].
3. Analyzing Column B:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{B. Distance (m)} \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 8 \\ \hline 4 & 10 \\ \hline 5 & 12 \\ \hline 6 & 14 \\ \hline \end{tabular} \][/tex]
- This data does not follow the quadratic form [tex]\( d = k \cdot t^2 \)[/tex]. It appears to follow a linear relationship instead.
4. Analyzing Column C:
- Given data for time [tex]\( t \)[/tex] and distance [tex]\( d \)[/tex]:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Time (s)} & \text{C. Distance (m)} \\ \hline 0 & 9 \\ \hline 1 & 18 \\ \hline 2 & 27 \\ \hline 3 & 36 \\ \hline 4 & 45 \\ \hline 5 & 54 \\ \hline 6 & 63 \\ \hline \end{tabular} \][/tex]
- Checking for quadratic relationship:
[tex]\[ \begin{align*} t = 0 & , \quad d = 9 \neq 0^2 \\ t = 1 & , \quad d = 18 \neq 1^2 \\ t = 2 & , \quad d = 27 \neq 2^2 \\ t = 3 & , \quad d = 36 \neq 3^2 \\ t = 4 & , \quad d = 45 \neq 4^2 \\ t = 5 & , \quad d = 54 \neq 5^2 \\ t = 6 & , \quad d = 63 \neq 6^2 \\ \end{align*} \][/tex]
- Clearly, this distance data does not follow a quadratic relationship.
Conclusion:
- Column A represents a quadratic relationship as distance [tex]\( d \)[/tex] is given by [tex]\( d = t^2 \)[/tex].
Thus, the correct answer is:
A. Column A
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.