Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's analyze each equation to determine which ones have infinitely many solutions by simplifying them and checking their consistency.
### Equation A:
[tex]\[ -10x - 10 = -10x + 10 \][/tex]
1. Start by moving all the terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side.
[tex]\[ -10x - 10 + 10x = -10x + 10 + 10x \][/tex]
2. This simplifies to:
[tex]\[ -10 = 10 \][/tex]
This is a contradiction, as [tex]\(-10\)[/tex] cannot equal [tex]\(10\)[/tex]. Therefore, Equation A does not have infinitely many solutions.
### Equation B:
[tex]\[ 10x - 10 = -10x - 10 \][/tex]
1. Combine like terms by moving [tex]\( x \)[/tex]-terms to one side:
[tex]\[ 10x + 10x - 10 = -10 \][/tex]
2. Combine constants:
[tex]\[ 20x - 10 = -10 \][/tex]
3. Add 10 to both sides:
[tex]\[ 20x = 0 \][/tex]
4. Divide by 20:
[tex]\[ x = 0 \][/tex]
This equation has exactly one solution, [tex]\( x = 0 \)[/tex]. Therefore, Equation B does not have infinitely many solutions.
### Equation C:
[tex]\[ -10x - 10 = -10x - 10 \][/tex]
1. Simplify both sides to see if the equation holds:
[tex]\[ -10x - 10 + 10x = -10x - 10 + 10x \][/tex]
2. This results in:
[tex]\[ -10 = -10 \][/tex]
This is always true, regardless of the value of [tex]\( x \)[/tex]. So, this equation is an identity, meaning it is valid for all values of [tex]\( x \)[/tex]. Therefore, Equation C has infinitely many solutions.
### Equation D:
[tex]\[ 10x - 10 = -10x + 10 \][/tex]
1. Move [tex]\( x \)[/tex] terms to one side:
[tex]\[ 10x + 10x - 10 = 10 \][/tex]
2. Combine constants:
[tex]\[ 20x - 10 = 10 \][/tex]
3. Add 10 to both sides:
[tex]\[ 20x = 20 \][/tex]
4. Divide by 20:
[tex]\[ x = 1 \][/tex]
This equation has exactly one solution, [tex]\( x = 1 \)[/tex]. Therefore, Equation D does not have infinitely many solutions.
### Conclusion
The only equation among the given options that has infinitely many solutions is:
[tex]\[ \text{(C)} -10x - 10 = -10x - 10 \][/tex]
Thus, the answer to the question is:
[tex]\[ \text{(C)} \][/tex]
### Equation A:
[tex]\[ -10x - 10 = -10x + 10 \][/tex]
1. Start by moving all the terms involving [tex]\( x \)[/tex] to one side and constant terms to the other side.
[tex]\[ -10x - 10 + 10x = -10x + 10 + 10x \][/tex]
2. This simplifies to:
[tex]\[ -10 = 10 \][/tex]
This is a contradiction, as [tex]\(-10\)[/tex] cannot equal [tex]\(10\)[/tex]. Therefore, Equation A does not have infinitely many solutions.
### Equation B:
[tex]\[ 10x - 10 = -10x - 10 \][/tex]
1. Combine like terms by moving [tex]\( x \)[/tex]-terms to one side:
[tex]\[ 10x + 10x - 10 = -10 \][/tex]
2. Combine constants:
[tex]\[ 20x - 10 = -10 \][/tex]
3. Add 10 to both sides:
[tex]\[ 20x = 0 \][/tex]
4. Divide by 20:
[tex]\[ x = 0 \][/tex]
This equation has exactly one solution, [tex]\( x = 0 \)[/tex]. Therefore, Equation B does not have infinitely many solutions.
### Equation C:
[tex]\[ -10x - 10 = -10x - 10 \][/tex]
1. Simplify both sides to see if the equation holds:
[tex]\[ -10x - 10 + 10x = -10x - 10 + 10x \][/tex]
2. This results in:
[tex]\[ -10 = -10 \][/tex]
This is always true, regardless of the value of [tex]\( x \)[/tex]. So, this equation is an identity, meaning it is valid for all values of [tex]\( x \)[/tex]. Therefore, Equation C has infinitely many solutions.
### Equation D:
[tex]\[ 10x - 10 = -10x + 10 \][/tex]
1. Move [tex]\( x \)[/tex] terms to one side:
[tex]\[ 10x + 10x - 10 = 10 \][/tex]
2. Combine constants:
[tex]\[ 20x - 10 = 10 \][/tex]
3. Add 10 to both sides:
[tex]\[ 20x = 20 \][/tex]
4. Divide by 20:
[tex]\[ x = 1 \][/tex]
This equation has exactly one solution, [tex]\( x = 1 \)[/tex]. Therefore, Equation D does not have infinitely many solutions.
### Conclusion
The only equation among the given options that has infinitely many solutions is:
[tex]\[ \text{(C)} -10x - 10 = -10x - 10 \][/tex]
Thus, the answer to the question is:
[tex]\[ \text{(C)} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.