Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we use the concept of similarity between triangles. When two triangles are similar by the SSS (Side-Side-Side) similarity theorem, their corresponding sides are proportional.
In other words, corresponding sides of similar triangles have the same ratio.
Given triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] are similar by SSS similarity theorem, we know the corresponding sides are proportional:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} = \frac{XY}{TS} \][/tex]
We need to find which ratio is also equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex] from the provided options:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{rx}\)[/tex]
Looking at the ratios given:
- [tex]\(\frac{XY}{TS}\)[/tex]: Since the corresponding sides for triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] are in proportion, this matches our requirement. Hence, [tex]\(\frac{XY}{TS}\)[/tex] is a correct ratio.
- [tex]\(\frac{SY}{RY}\)[/tex] and [tex]\(\frac{RX}{XT}\)[/tex] and [tex]\(\frac{ST}{rx}\)[/tex] do not represent the proportional sides of the similar triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] correctly.
Therefore, the correct corresponding ratio equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex] is:
[tex]\[ \frac{XY}{TS} \][/tex]
To sum up, the ratio [tex]\( \frac{XY}{TS} \)[/tex] is equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex].
Thus, the answer is:
[tex]\[ \boxed{1} \][/tex]
In other words, corresponding sides of similar triangles have the same ratio.
Given triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] are similar by SSS similarity theorem, we know the corresponding sides are proportional:
[tex]\[ \frac{RT}{RX} = \frac{RS}{RY} = \frac{XY}{TS} \][/tex]
We need to find which ratio is also equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex] from the provided options:
1. [tex]\(\frac{XY}{TS}\)[/tex]
2. [tex]\(\frac{SY}{RY}\)[/tex]
3. [tex]\(\frac{RX}{XT}\)[/tex]
4. [tex]\(\frac{ST}{rx}\)[/tex]
Looking at the ratios given:
- [tex]\(\frac{XY}{TS}\)[/tex]: Since the corresponding sides for triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] are in proportion, this matches our requirement. Hence, [tex]\(\frac{XY}{TS}\)[/tex] is a correct ratio.
- [tex]\(\frac{SY}{RY}\)[/tex] and [tex]\(\frac{RX}{XT}\)[/tex] and [tex]\(\frac{ST}{rx}\)[/tex] do not represent the proportional sides of the similar triangles [tex]\( \triangle RST \)[/tex] and [tex]\( \triangle RYX \)[/tex] correctly.
Therefore, the correct corresponding ratio equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex] is:
[tex]\[ \frac{XY}{TS} \][/tex]
To sum up, the ratio [tex]\( \frac{XY}{TS} \)[/tex] is equal to [tex]\( \frac{RT}{RX} \)[/tex] and [tex]\( \frac{RS}{RY} \)[/tex].
Thus, the answer is:
[tex]\[ \boxed{1} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.