Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for [tex]\( y = \sin (\sin (x)) \)[/tex] at the point [tex]\( x = 3\pi \)[/tex], we need to follow these steps:
1. Understand the Inner Function:
- First, recognize the inner function: [tex]\( \sin(x) \)[/tex].
2. Evaluate the Inner Function at [tex]\( x = 3\pi \)[/tex]:
- Calculate [tex]\( \sin(3\pi) \)[/tex].
- Remember that [tex]\( \sin(\theta) \)[/tex] is a periodic function with a period of [tex]\( 2\pi \)[/tex]. Therefore, [tex]\( \sin(3\pi) \)[/tex] can be simplified as follows:
[tex]\[ \sin(3\pi) = \sin(\pi + 2\pi) = \sin(\pi) \][/tex]
- We know that [tex]\( \sin(\pi) = 0 \)[/tex].
3. Use the Result from the Inner Function:
- Now that we have [tex]\( \sin(3\pi) = 0 \)[/tex], we substitute this result into the outer function: [tex]\( \sin (\sin(3\pi)) \)[/tex].
4. Evaluate the Outer Function:
- This simplifies to [tex]\( \sin(0) \)[/tex].
- We know that [tex]\( \sin(0) = 0 \)[/tex].
5. Therefore:
- [tex]\( \sin(\sin(3\pi)) = \sin(0) = 0 \)[/tex].
So, the detailed solution shows that the value of [tex]\( y \)[/tex] at [tex]\( x = 3\pi \)[/tex] for the function [tex]\( y = \sin(\sin(x)) \)[/tex] is indeed [tex]\( 0 \)[/tex].
1. Understand the Inner Function:
- First, recognize the inner function: [tex]\( \sin(x) \)[/tex].
2. Evaluate the Inner Function at [tex]\( x = 3\pi \)[/tex]:
- Calculate [tex]\( \sin(3\pi) \)[/tex].
- Remember that [tex]\( \sin(\theta) \)[/tex] is a periodic function with a period of [tex]\( 2\pi \)[/tex]. Therefore, [tex]\( \sin(3\pi) \)[/tex] can be simplified as follows:
[tex]\[ \sin(3\pi) = \sin(\pi + 2\pi) = \sin(\pi) \][/tex]
- We know that [tex]\( \sin(\pi) = 0 \)[/tex].
3. Use the Result from the Inner Function:
- Now that we have [tex]\( \sin(3\pi) = 0 \)[/tex], we substitute this result into the outer function: [tex]\( \sin (\sin(3\pi)) \)[/tex].
4. Evaluate the Outer Function:
- This simplifies to [tex]\( \sin(0) \)[/tex].
- We know that [tex]\( \sin(0) = 0 \)[/tex].
5. Therefore:
- [tex]\( \sin(\sin(3\pi)) = \sin(0) = 0 \)[/tex].
So, the detailed solution shows that the value of [tex]\( y \)[/tex] at [tex]\( x = 3\pi \)[/tex] for the function [tex]\( y = \sin(\sin(x)) \)[/tex] is indeed [tex]\( 0 \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.