Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find [tex]\( h'(4) \)[/tex] given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], where [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex], let's perform the following steps:
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.