At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find [tex]\( h'(4) \)[/tex] given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], where [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex], let's perform the following steps:
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
1. Differentiate [tex]\( h(x) \)[/tex] with respect to [tex]\( x \)[/tex]:
Given [tex]\( h(x) = \sqrt{4 + 3f(x)} \)[/tex], we need to differentiate this with respect to [tex]\( x \)[/tex].
First, let's set:
[tex]\[ u = 4 + 3f(x) \][/tex]
Thus, [tex]\( h(x) = \sqrt{u} \)[/tex].
The derivative [tex]\( h'(x) \)[/tex] can be found using the chain rule. We first differentiate [tex]\( \sqrt{u} \)[/tex] with respect to [tex]\( u \)[/tex] and then multiply by the derivative of [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} \sqrt{u} = \frac{1}{2\sqrt{u}} \cdot \frac{du}{dx} \][/tex]
2. Differentiate [tex]\( u \)[/tex] with respect to [tex]\( x \)[/tex]:
Recall that:
[tex]\[ u = 4 + 3f(x) \][/tex]
Therefore:
[tex]\[ \frac{du}{dx} = 3 \frac{df(x)}{dx} = 3f'(x) \][/tex]
Now, we have:
[tex]\[ \frac{d}{dx} \sqrt{4 + 3f(x)} = \frac{1}{2\sqrt{4 + 3f(x)}} \cdot 3f'(x) \][/tex]
Simplifying:
[tex]\[ h'(x) = \frac{3f'(x)}{2\sqrt{4 + 3f(x)}} \][/tex]
3. Evaluate [tex]\( h'(x) \)[/tex] at [tex]\( x = 4 \)[/tex]:
We are given [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]. Substitute these values into the expression for [tex]\( h'(x) \)[/tex]:
[tex]\[ h'(4) = \frac{3 f'(4)}{2\sqrt{4 + 3 f(4)}} \][/tex]
Substitute [tex]\( f(4) = 4 \)[/tex] and [tex]\( f'(4) = 3 \)[/tex]:
[tex]\[ h'(4) = \frac{3 \cdot 3}{2\sqrt{4 + 3 \cdot 4}} \][/tex]
Simplify inside the square root:
[tex]\[ 4 + 3 \cdot 4 = 4 + 12 = 16 \][/tex]
Thus:
[tex]\[ h'(4) = \frac{9}{2 \cdot \sqrt{16}} = \frac{9}{2 \cdot 4} = \frac{9}{8} \][/tex]
Therefore, the derivative [tex]\( h'(4) \)[/tex] is:
[tex]\[ h'(4) = \frac{9}{8} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.