At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the value that should be added to the expression [tex]\( x^2 - 10x + \square \)[/tex] to make it a perfect-square trinomial, we need to follow these steps:
1. Recognize the Form of a Perfect-Square Trinomial: A perfect-square trinomial can be written as [tex]\( (x - a)^2 \)[/tex], which expands to:
[tex]\[ (x - a)^2 = x^2 - 2ax + a^2 \][/tex]
2. Compare with the Given Expression: The given expression is [tex]\( x^2 - 10x + \square \)[/tex]. This expression will match the form [tex]\( x^2 - 2ax + a^2 \)[/tex] where [tex]\( -2a \)[/tex] corresponds to the coefficient of [tex]\( x \)[/tex], which is [tex]\(-10\)[/tex].
3. Solve for [tex]\( a \)[/tex]: Set up the equation based on the comparison:
[tex]\[ -2a = -10 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ 2a = 10 \implies a = 5 \][/tex]
4. Find the Missing Term: The missing term that completes the perfect-square trinomial is [tex]\( a^2 \)[/tex]. Calculate [tex]\( a^2 \)[/tex]:
[tex]\[ a^2 = 5^2 = 25 \][/tex]
Therefore, the value that makes the expression [tex]\( x^2 - 10x + \square \)[/tex] a perfect-square trinomial is [tex]\( 25 \)[/tex].
So, the complete perfect-square trinomial is:
[tex]\[ x^2 - 10x + 25 = (x - 5)^2 \][/tex]
1. Recognize the Form of a Perfect-Square Trinomial: A perfect-square trinomial can be written as [tex]\( (x - a)^2 \)[/tex], which expands to:
[tex]\[ (x - a)^2 = x^2 - 2ax + a^2 \][/tex]
2. Compare with the Given Expression: The given expression is [tex]\( x^2 - 10x + \square \)[/tex]. This expression will match the form [tex]\( x^2 - 2ax + a^2 \)[/tex] where [tex]\( -2a \)[/tex] corresponds to the coefficient of [tex]\( x \)[/tex], which is [tex]\(-10\)[/tex].
3. Solve for [tex]\( a \)[/tex]: Set up the equation based on the comparison:
[tex]\[ -2a = -10 \][/tex]
Solving for [tex]\( a \)[/tex]:
[tex]\[ 2a = 10 \implies a = 5 \][/tex]
4. Find the Missing Term: The missing term that completes the perfect-square trinomial is [tex]\( a^2 \)[/tex]. Calculate [tex]\( a^2 \)[/tex]:
[tex]\[ a^2 = 5^2 = 25 \][/tex]
Therefore, the value that makes the expression [tex]\( x^2 - 10x + \square \)[/tex] a perfect-square trinomial is [tex]\( 25 \)[/tex].
So, the complete perfect-square trinomial is:
[tex]\[ x^2 - 10x + 25 = (x - 5)^2 \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.